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Abstract

This research concentrates on enhancing unauthorized access identification in Internet of 
Things (IoT) networks by merging antcolony optimization (ACO) with CNN to create a more 
accurate and efficient security system. As IoT eco framework grows, they increasingly 
become targets for sophisticated cyberattacks, which exploit their distributed nature and 
limited computational resources. To address these vulnerabilities, the proposed approach 
uses ACO to optimize feature compilation, minimizing data complexity and improving 
manipulates efficiency. These elected features are then analyzed by a CNN model, which 
excels in identifying complex patterns and determining anomalies with high accuracy. By 
integrating ACO and CNN, this hybrid structure achieves both high identification accuracy 
and adaptability to new and evolving threats. The effectiveness of this system in identify-
ing external threats in IoT environmental infrastructure showcased its potential as a robust 
and scalable security solution for protecting IoT networks against diverse cyber threats.

Authors’e-mail ID: srikirubaburi@gmail.com, omseemarathod@gmail.com, swaminathan.
vinoth@gmail.com, bhavna.bajpai38379@paruluniversity.ac.in, dongre.sneha@gmail.com, 
ponsivs@yahoo.com

Authors’ Orcid ID:  0000-0002-0293-5809, 0000-0002-1926-161X, 0000-0002-8116-057X, 
0000-0003-3271-3956, 0000-0002-1080-2109, 0000-0001-5746-0268

How to cite this article: R. Kiruba Buri, et al., Enhancing Security in Heterogeneous IoT 
Networks through Intelligent Identification Systems, Journal of VLSI circuits and systems, 
Vol. 7, No.1, 2025 (pp. 155–166).

KEYWORDS:
Unauthorized Access Identification 
IoT Security 
Ant Colony Optimization 
Convolutional-Type 
Neural-Based Network 
Feature Compilation
Cyber Threats 
Anomaly Detection 
Hybrid Model

ARTICLE HISTORY:
Received	 24.02.2025
Revised	 27.03.2025
Accepted	 02.04.2025

DOI:
https://doi.org/10.31838/JVCS/07.01.17

Introduction

The rapid expansion of the Internet of Things (IoT) has 
revolutionized connectivity, enabling smart devices to 
collect and share data across various applications like 
healthcare, transportation, and smart cities. However, 
this proliferation of IoT devices has introduced nota-
ble security concerns, primarily because of the limited 
computational resources and distributed nature of IoT 
networks, which make them vulnerable to sophisticated 
cyberattacks. Traditional unauthorized access identifi-
cation framework often struggle to effectively manage 
the complexities and resource constraints inherent in IoT 

environmental infrastructure, necessitating advanced 
solutions that could balance efficacy with high identifi-
cation accuracy.[1]

Recent research has explored various methods for 
enhancing IDS in IoT settings. One promising approach 
is the integration of optimization algorithms with deep 
learning models, which could enhance the system’s abil-
ity to detect anomalies while maintaining low compu-
tational overhead.[2] Optimization techniques, like ant 
colony optimization (ACO), have shown considerable 
potential in refining feature compilation manipulations, 
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of CNN for accurate anomaly detection. By addressing 
IoT-specific challenges, like resource constraints and 
complex data structures, hybrid ACO-CNN models pro-
vide a promising solution to safeguard IoT networks 
against an increasingly sophisticated range of cyber 
threats. Further research is needed to refine these mod-
els for real-time identification and adaptability, ensuring 
that IoT framework remains secure and resilient.[15]

Literature Survey

Unauthorized access identification in IoT networks has 
garnered notable attention in recent years because of 
the growing vulnerabilities associated with the wide-
spread deployment of IoT devices. As IoT frameworks 
are inherently resource-constrained, designing effective 
and efficient unauthorized access identification frame-
work (IDS) is a complex challenge. Various approaches 
have been explored to enhance the identification accu-
racy and minimize the computational overhead of IDS 
in IoT networks. One of the key techniques involves 
the integration of supervisor learning and optimization 
algorithms to improve both the accuracy and efficacy 
of anomaly detection. The use of optimization algo-
rithms, like ACO, has shown promise in selecting rele-
vant features, thereby minimizing data dimensionality 
and improving the performance of IDS models.[16] This is 
particularly crucial in IoT environmental infrastructure 

thereby minimizing the dimensionality of data and 
enhancing manipulation speed.[3] ACO, inspired by the 
foraging behavior of ants, has been effective in optimiz-
ing complex data environmental infrastructure, making 
it particularly suitablefor IoT dependent IDS.[4] By select-
ing the most relevant features, ACO could minimize 
computational demands, allowing the IDS to operate 
more efficiently within the resource constraints of IoT 
devices.[5]

Simultaneously, deep learning models, especially CNN, 
have proven their effectiveness in analyzing intricate 
data patterns for anomaly detection. CNN models excel 
in identifying spatial hierarchies and are capable of dis-
cerning subtle deviations within large data streams, a 
critical ability for determining advanced cyber threats.
[6] Research suggests that CNN dependent models out-
perform traditional supervisor learning techniques in 
terms of accuracy and adaptability, especially when 
used within IoT-specific contexts where data are often 
unstructured and high_dimensional.[7] By merging ACO 
with CNN, researchers have developed hybrid IDS mod-
els that integrate the strengths of optimization and 
deep learning, leading to robust framework capable of 
high precision and efficient anomaly identification,[8] as 
depicted in Figure 1. The combination of ACO and CNN 
creates a synergistic effect, enabling these hybrid sys-
tems to address limitations found in individual models. 
ACO’s feature compilationminimizes the input data’s 
dimensionality, which in turn optimizes the CNN’s 
manipulation efficacy and minimizes latency in identi-
fication.[9] Hybrid approaches like these also showcased 
adaptability to new and evolving threats, as CNNs could 
be trained on updated datasets to refine identification 
accuracy over time.[10] This adaptability is critical in 
the dynamic landscape of IoT security, where emerging 
threats continually evolve and demand responsive solu-
tions.[11, 31]

Empirical studies indicate that hybrid IDS models not 
only improve identification accuracy but also minimize 
false-positive rates (FPR), which is crucial for minimiz-
ing disruptions in IoT networks.[12,32]

 In addition, these 
models often exhibit scalability, allowing them to be 
implemented across different IoT environmental infra-
structure with minimal configuration changes.[13] The 
flexibility and scalability of hybrid IDS make them highly 
applicable in diverse fields, from industrial IoT networks 
to smart homes and urban infrastructure[14] Henceforth, 
the integration of ACO and CNN within IDS describes ano-
table advancement in IoT security. This approach lever-
ages the optimization capabilities of ACO for efficient 
data manipulation and the pattern recognition strength 

Data_Collection_and_Monitoring

Feature_Selection_Engineering
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Fig. 1. General flow diagram of unauthorized access 
identification framework.
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shown that distributed and decentralized IDS models, 
which utilize multiple nodes for manipulates and detec-
tion, offer better scalability and are more suitable for 
large-scale IoT networks.[23] These models ensure that 
each node in the network could independently detect 
external threats whileminimizing the load on centralized 
framework, thus improving overall network security. 
Furthermore, such models are more resilient to attacks 
on the central identification system, ensuring that iden-
tification capabilities are maintained even if parts of the 
network are compromised.[24,36]

The application of ensemble learning techniques has 
also been explored as a means to improve IDS accuracy 
in IoT the environmental infrastructure. By merging 
multiple supervisor learning models, ensemble tech-
niques could minimize the likelihood of misclassifica-
tion and improve the robustness of unauthorized access 
identification.[25] Studies have showcased that ensemble-
dependent approaches, when integrated with CNN or 
other deep learning models, could provide a more com-
prehensive and resilient IDS for IoT networks.[26] These 
approaches are particularly effective in determining 
various types of attacks and minimizing the impact of 
false positives, which could otherwise lead to unneces-
sary disruptions in the IoT framework.

Real-time identification and response capabilities are 
also a major focus of recent research. IoT networks need 
IDS framework that could manipulate and respond to 
threats as they occur, ensuring that the system remains 
secure at all times. Several studies have focused on 
optimizing real-time identificationframework, utilizing 
techniqueslike streammanipulates and low-latency mod-
els, to ensure that external threat events are identi-
fied and addressed without notable delays.[27,37] This is 
essential for critical IoT applications, like healthcare and 
industrial control framework, where even a short delay 
in identification could have serious consequences.

Lastly, researchers have investigated the integration of 
IDS with other security mechanisms, like firewalls and 
external threat preventionframework (IPS), to provide 
a multilayered approach to IoT security. By merging 
IDS with other security measures, these frameworks 
offerimproved protection against a broader range of 
cyberattacks, ensuring a more holistic approach to IoT 
security.[28,38] Multilayered security frameworks are also 
more resilient to complex attack strategies that will 
attempt to bypass individual defense mechanisms. Also, 
the integration of machine learning, optimization algo-
rithms, and deep learning techniques has revolution-
ized unauthorized access identification in IoT networks. 

where devices give vast amounts of data, and efficient 
data manipulation is necessary to prevent delays and 
ensure timely detection.

In parallel, deep learning models, especially CNN, have 
showcased strong capabilities in identifying complex 
patterns within large data-sets making them suit for 
unauthorized access identificationin IoT environmental – 
infrastructure. CNNs, by their nature, excel at feature 
extraction, which is crucial for determining previously 
unseen or sophisticated external threats.[17,33] These 
models have been shown to outperform traditional 
supervisor learning techniques because of their ability 
to manipulatehigh-dimensional and unstructured data 
efficiently. In many studies, CNN-dependent IDS frame-
workhave provided improved accuracy in determining-
various types of attacks, including denial of service 
(DoS) and unauthorized access attempts, in IoT net-
works.[18,34]

Hybrid models that combine optimization algorithms 
and deep learning techniques have also been a focus of 
research. The integration of ACO with CNN, for instance, 
enables the IDS to leverage both feature optimization and 
deep learning, resulting in a system that is both accurate 
and computationally efficient. Such hybrid approaches 
have showcased promising outcomes in minimizing false 
positives and improving the overall identification perfor-
mance of IDS in IoT networks.[19,35] In addition, researchers 
have explored the potential of other optimization algo-
rithms, like genetic algorithms (GA), to complement CNN 
models in selecting features and refining the identifica-
tion manipulation.[20] These hybrid frameworks capitalize 
on the strengths of both techniques, making them highly 
adaptable to the dynamic and diverse nature of the IoT 
environmental infrastructure.

Another notable area of research concentrates on anomaly 
identification utilizing unsupervised learning approaches, 
which are particularly useful in scenarios where labelled 
data are scarce. Unsupervised anomaly identification 
techniques have been employed in several studies to iden-
tify malicious activities without the need for pre-labell-
edexternal threat data.[21] This is especially beneficial in 
IoT networks, where attacks could be novel and difficult 
to anticipate. These methods, when combined with opti-
mization algorithms, have been shown to enhance the 
identification capabilities of IDS framework by effectively 
identifying new and evolving threats in real time.[22]

Moreover, the scalability of IDS framework is another 
important consideration, as IoT networks are often large 
and extending in a progressive manner. Research has 
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where μj​ is the mean, and σj​ is the standard deviation 
of feature fj​.The feature extraction manipulation utilizes 
correlation analysis to identify features most relevant 
for determininganomalies. For each feature pair, we 
compute a correlation score cij​ utilizing Pearson’s cor-
relation formula (3).
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High-correlation features, which are indicative of 
potential external threat behavior, are then elected 
for further analysis. To optimize this feature set, ACO 
is applied, initializing a set of artificial ants, where 
each ant describes a candidate solution depending on 
selected features. The probability pij​ for ant k choosing 
feature j is calculated by Equation (4).
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With τij ​representing the pheromone level on the path 
associated with feature j and ηij​ representing the 
desirability of that feature. Here, α andβ are metrics 
controlling the influence of pheromone and heuristic 
desirability, respectively. As ants explore the solution 
space, pheromone trails are updated according to the 
relation in Equation (5).

	 τij = (1 −ρ)τij + Δτij.	 (5)

Through the development of hybrid models, real-time 
identification framework, and distributed architecture, 
researchers have made notable strides toward building 
more effective and efficient IDS for IoT environmental 
infrastructure. These advancements ensure that IoT net-
works could remain secure in the face of evolving cyber 
threats, providing a solid foundation for the continued 
growth of the IoT ecosystem.[29,30]

Proposed Framework 

The proposed IoT-dependent unauthorized access identi-
fication system (IDS) combines ACO and CNN to enhance 
identification capabilities. It begins by collecting data 
from IoT devices, forming a multidimensional data-set that 
undergoes normalization to ensure feature consistency. 
Relevant features are then elected through correlation anal-
ysis, where features highly correlated with known external 
threat patterns are identified. By mimicking the behavior 
of ants, ACO increases this feature set. Pheromone trails 
are applied for directing feature compilation based on how 
well they recognize external dangers The elected features 
are input into the CNN model, where a layered structure of 
convolution, activation (utilizing ReLU), and pooling trans-
form the data into a meaningful feature map, as shown in 
Figure 2. These maps pass through the softmax layer for 
final classification, assigning each data instance to a pre-
dicted class. If an anomaly is detected, the system gener-
ates alerts and initiates response actions depending on the 
threat level. A feedback loop retrains the CNN utilizing new 
data, adapting the structure to evolving external threat 
patterns. Scalability is managed by balancing the compu-
tational load across resources, ensuring efficacy even with 
increased network size.

In the proposed IoT-dependent unauthorized access 
identification system (IDS) framework, integrating 
ACO and CNN requires mathematical formulations at 
each phase of the system to ensure optimal identifica-
tion capabilities and efficient manipulation of external 
threat data. Starting with data collection, the IoT net-
work generates a multidimensional dataset represented 
as in Equation (1).

	 X = {x1,x2,…,xn}	 (1)

where each data point xi​ consists of a set of features 
fj​ for j=1,2,…,mj. During pre-manipulates, each feature 
is normalized to maintain consistent data scaling across 
the input by applying as in Equation (2).
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Fig. 2. Flow mechanism of the proposed framework.
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It is minimized by utilizing gradient descent to adjust 
structure metrics by Equation (10) by iteratively apply-
ing a constraint described in Equation (11).

	 θ←θ − η∇θL(θ).	 (11)

Whereη is the learning rate, and ∇θL(θ)denotes the gra-
dient of the loss with respect to θ. System scalability is 
managed by balancing the computational load L(t) across 
distributed resources to ensure that the IDS remains 
effective as network traffic increases. Mathematically, 
this load could be given in Equation (12).

	 L = ∑iri. (i = 1 tom)	 (12)

The above constraint will be computed at a given time 
t, where ri describes the manipulated resource assigned 
to each task i. As the network grows, the IDS dynami-
cally reallocates resources to handle the increased data 
volume, ensuring consistent identification efficiency.

The pseudo code in class diagram 1 for the proposed 
IoT-dependent unauthorized access identification sys-
tem (IDS) framework outlines its modular components, 
each responsible for specific functions in the unautho-
rized access identification manipulation. The main class, 
IDS, aggregates essential attributes like data sources, 
centralized storage for data, manipulated data repre-
sentations, and system outputs like detected external 
threats and response actions. It includes attributes for 
maintaining the list of connected data sources, central 
storage pathways, manipulated data (cleaned, normal-
ized, and transformed), and an adjusted feature list. 
The IDS class also contains attributes to manage struc-
ture training phase, validation, real-time monitoring of 
IoT data, and details for generating alerts and responses 
in the event of unauthorized access identification. Data 
Manipulation is responsible for handling the prelimi-
nary data phases, including cleaning, normalization, 
and transformation, preparing raw IoT data for effective 
analysis. FeatureCompilation handles the compilation 
of relevant attributes from the transformed datasets, 
outputting the most critical features that contribute to 
identifying external threat patterns.

The Structure class concentrates on the training-phase 
and validates the CNN-dependent model, which is essen-
tial for accurately classifying data as normal or intrusive. 
Real-Time Identification monitors incoming data con-
tinuously, utilizing the trained structure to detect and 
classify anomalies, with attributes for monitoring status, 
detected anomalies, and their types. ResponseSystem 
activates upon determining an anomaly, generating alert 

whereρ denotes the pheromone evaporation rate, and 
Δτij​ is the incremental pheromone added depending 
on the solution quality, thereby guiding future feature 
compilation.

Once optimal features are identified, the datasets are 
fed into a CNNstructure for a trainingphase. The CNN 
consists of multiple layers, where input data are given 
by Equation (6).

	 X = {x1,x2,…,xn}	 (6)

It undergoes convolutional-type changesto give feature 
maps. Each feature map F in the convolutional-type 
layer is computed as in Equation (7).

	 F = f(W ⋅ X + b).	 (7)

Wherew is the weight matrix, and b is the bias term 
for the layer. The activation feature is as shown in 
Equation (8).

	 f(x) = max(0,x).	 (8)

The above relation, commonly known as the ReLU 
function, is employed to introduce nonlinearity into 
the model. Pooling layers, which follow convolutional-
typelayers, further minimizethe dimensionality of 
feature maps by applying a max-pooling operation, 
given as fp(x)  = max(xi) over nonoverlapping regions, 
thus retaining notable features while minimizingcom-
putation. The CNN model’s final layer uses a softmax 
activation feature to classify each input into different 
categories, like normal or external threat. For each 
class k, the probability P(y = k∣x) is calculated utilizing 
Equation (9)

	 y = argmax k P(y = k∣x).	 (9)

The above relation forms the basis for classifying data 
as either normal or indicative of external threat. Upon 
determining anexternal threat, the IDS framework gen-
erates alerts and triggers a response depending on the 
severity of the classified anomaly. The system incorpo-
rates a feedback loop where the CNN structure under-
goes continuous evaluation and retraining phase to adapt 
to new external threat patterns. This iterative retraining 
phase manipulates historical and real-time data, updat-
ing the CNN structure metrics to improve identification 
accuracy. The loss feature is described by the relation 
given in Equation (10)

	 θ = (W,b).	 (10)
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information, specifying response actions, and notifying 
administrators of the detected external threat, allow-
ing for rapid intervention. The FeedbackLoop improves 
system adaptability by utilizingperformance metrics and 
feedback data from recent external threatincidents to 
refine structure metrics and system responses. Finally, 
the feature SystemManagement oversees system-level 
settings, scalability, and optimization needs, ensur-
ing thatthe IDS could adapt to an increasing number of 
devices in the network. The scalabilityInfo attribute in 
SystemManagement manages data on resource require-
ments and allocation strategies to maintain identifica-
tion efficacy as the IoT network grows.

OUTCOMES AND DISCUSSION

The outcomes of the proposed IoT-dependent unau-
thorized access identification system (IDS) framework, 
merging ACO and CNN, showcased improved identifica-
tion capabilities and efficacy in manipulating external 
threatdata within the IoT environmental infrastructure. 
By merging ACO for adjusted feature compilation and 
CNN for effective classification, the system success-
fully identifies notable patterns indicative of potential 
external threats, effectively filtering out irrelevant or 
redundant data. This adjusted feature set contributes to 
improved classification accuracy and minimizes compu-
tational requirements, enabling real-time monitoring of 
network traffic. Furthermore, the CNN model’s layered 
structure allows for capturing complex external threat 
patterns, enhancing the system’s ability to differentiate 
between normal and malicious activities. The proposed 
framework’s dynamic scalability ensures effective han-
dling of increased data volumes, making it well-suited 
for large-scale IoT networks. The feedback loop incor-
porated within the system aids in adapting to evolving 
external threat patterns in an iterative manner updating 
the CNN model, thus sustaining high identification accu-
racy over time.

The outcomes from the proposed framework showcased 
various key performance metrics related to unautho-
rized access identification, each visualized in differ-
ent graph styles. Figure 3 illustrates the identification 
time, where the identification time is plotted over time. 
A threshold of 100ms is set, and areas exceeding this 
threshold are marked in orange. The impact of crossing 
the threshold is notable: when the identification time 
surpasses 100ms, it showcased potential delays in the 
unauthorized access identification system, which could 
lead to missed attacks or slower responses to threats. 
This could affect the overall efficacy and effective-
ness of the system. In the analysis, identification times 

Class diagram 1: Presentation of pseudo code for 
the proposed framework.

classDiagram
class IDS {
- data-setsources: list
- centralStorage: str
- cleanedData: str
- normalizedData: str
- transformedData: str
- ElectedFeatures: list
- trainedModel: str
- validationData: str
- realTimeMonitoring: bool
- anomalyDetected: bool
- external - threat Type: str
- alertInfo: str
- responseActions: list
- adminNotification: str
- performanceMetrics: str
- feedbackData: str
- systemMetricss: str
- scalabilityInfo: str
}
Class DataManipulatesing {
- cleanedData: str
- normalizedData: str
- transformedData: str
}
Class FeatureCompilation {
ElectedFeatures: list
}
Class Structure {
- trainedModel: str
- validationData: str
}
Class RealTimeIdentification{
- realTimeMonitoring: bool
- anomalyDetected: bool
- external - threat Type: str
}
Class ResponseSystem {
- alertInfo: str
- responseActions: list
- adminNotification: str
}
Class FeedbackLoop {
- performanceMetrics: str
- feedbackData: str
}
Class SystemManagement {
- systemMetricss: str
- scalabilityInfo: str
}

often reach values around 110–130ms, which is 10–30ms 
above the threshold. For instance, during peak identifi-
cation intervals, identification times reach 125ms, 25ms 
above the threshold, and these occurrences happen 
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Algorithm 1: Step by step manipulating phase of the 
proposed framework 

Step 1: Data Collection
•	Collect multidimensional IoT data from the network.
•	Represent the data sets as in (1), where each data 

point (Xi) has a set of features (fj)
Step 2: Data Preprocessing
•	For each feature (fj), normalize it utilizing Equation 

(2) to maintain consistent data scaling.
Step 3: Feature Extraction
•	Perform correlation analysis on each feature pair to 

compute a correlation score (cij) utilizing Equation 
(3).

•	Select high-correlation features indicative of 
potential external threat behavior for further 
analysis.

Step 4: Feature Optimization utilizing ACO
•	Initialize a set of artificial ants, each representing a 

candidate solution for feature compilation.
•	For each ant (k), compute the probability (pij) of 

choosing feature(j)depending on pheromone level and 
desirability utilizing Equation (3).

•	Updating pheromone trails dependson solution 
quality utilizing Equation (4), guiding future feature 
compilation.

Step 5 :CNN Structure Training-phase -phase 
•	Feed the adjusted feature set into the CNN structure 

for training-phase -phase.
•	Manipulates inputdatasets andemploys convolutional-

type transformations to give feature maps as 
described in Equation (6).

•	Employ the ReLU activation feature in Equation (7) 
for nonlinearity.

•	Use pooling layered structure tominimize 
dimensionality of feature maps, retaining essential 
information.

Step 6 :Classification and Unauthorized Access 
Identification 
•	At the final layer, use the softmax activation feature 

to classify inputs, calculating the probability P(y=k 
mid x)for each class ( k ), as given in Equation (8).

•	Identify the external threat type or classify the data 
as normal depending on the maximum probability.

Step 7: Alert and Response Generation
•	If an external threat is detected, give alerts and 

trigger response actions depending on the classified 
anomaly’s severity.

Step 8: Feedback and Continuous Evaluation
•	Implement a feedback loop for continuous evaluation 

and retraining-phase -phase of the CNN model.
•	Minimize the loss feature given by Equation (9) 

utilizing gradient descent to adjust structure metrics 
iteratively as per Equation (10).

Step 9: Scalability Management
•	Balance the computational load across distributed 

resources to maintain consistent IDS effectiveness as 
network traffic grows.

•	Compute the total load (L) utilizing Equation (11) and 
dynamically reallocate resources as network volume 
increases.

approximately 12–15 times within the monitored period. 
This range suggests a consistent delay in detection, 
which could result in slower response times to network 
external threats. Such delays are critical as they could 
lead to the system missing early signs of attacks, nota-
blyminimizing its efficiency.

Figure 4 presents the FPR as a bar graph, with a thresh-
old of 5%. Any value above this threshold is highlighted 
in yellow. Crossing the 5% threshold showcased that the 
system is incorrectly identifying benign traffic as exter-
nal threats more frequently, leading to a higher num-
ber of false alarms. This minimizes the trustworthiness 
of the system and will cause unnecessary actions to be 
taken, like blocking legitimate users or manipulations. 
During the analysis, FPR values often fluctuate between 
4.5% and 7%, showing that certain times, the system 
willbe incorrectly flagging benign activity as malicious. 
For example, on several occasions, FPR spikes to 6.8%, 
which is 1.8% higher than the threshold. This happens 
approximately six to eight times in the monitoring 
period. These false positives could result in unnecessary 
resource allocation to investigate non issues, poten-
tially impacting the system’s overall effectiveness and 
efficiency.

Figure 5 shows the identification sensitivity utilizing 
an area graph. The threshold for sensitivity is set at 
80%, and any dips below this threshold are shaded in 
pink. When the sensitivity falls below 80%, the system 
becomes less capable of determining actual external 
threats, which could lead to a higher risk of attacks slip-
ping through undetected. This reduction in sensitivity 
could result in serious security vulnerabilities within the 
network. In the analysis, sensitivity values tend to hover 
around 82–85%, with occasional dips down to 75–78%. For 
instance, sensitivity falls to 76% during a specific period, 
representing a 4% drop below the threshold. These dips 
in sensitivity occur approximately four to five times 
throughout the observation, indicating that the system 
is occasionally missing threats, thus increasing the likeli-
hood of security breaches and vulnerabilities.

Also, Figure 6 displays the external threat severity on 
a line graph, with a threshold of severity set at 5. Any 
value above this threshold ishighlighted in brown. When 
the external threat severity surpasses the threshold, it 
showcased that more severe attacks are being detected. 
This means that the system has identified critical 
external threats, which need immediate attention and 
mitigation. The impact of this crossing is critical for pri-
oritizing resources to respond to high-severity threats 
effectively. In the analysis, the severity level often 
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Fig. 3. Analysis of identification time taken.

Fig. 4. Comparison of false-positive rates over 
various time spans.

Fig. 5. Sensitivity rate achieved by the proposed 
framework.

Fig. 6. Severity of external threats to the proposed 
system.

Fig. 7. Comparison rate of the anomaly identification 
rate.

reaches values between 5 and 8, indicating notable 
external threats that need to be addressed immediately. 
For example, during high-traffic periods, the severity 
reaches 7, surpassing the threshold by 2 points. The sys-
tem detects high-severity external threats 10–12 times 

in the monitored period. These occurrences highlight 
the need for immediate mitigation strategies and pri-
oritization of resources to handle such critical threats. 
The severity spikes occur approximately every 2–3 days, 
signaling the importance of timely response to minimize 
damage.

Figure 7 visualizes the anomaly identification rate uti-
lizing a histogram, with a threshold of 85%. The thresh-
old crossing is marked in light blue. When the anomaly 
identification rate exceeds this threshold, the system 
is performing well by determining anomalies accu-
rately. However, if the identification rate drops below 
85%, it showcased a decline in the system’s ability to 
identify abnormal activities, which could result in unde-
tected external threats and overall system vulnerability. 
Throughout the analysis, the anomaly identification rate 
varies between 80% and 90%, occasionally dipping to 
75%. For instance, the rate falls to 78% during a specific 
time frame, which is 7% below the threshold. These dips 
occur around four to six times during the observation 
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Table 1. Performance evaluation of the proposed framework with supporting research works.

Metrics System 1: 
ML-dependentIDS 
(Paper A)

System 2:  
NN-dependentIDS  
(Paper B)

System 3:  
Hybrid IDS  
(Paper C)

Proposed System: 
Advanced IDS

Identification Time (ms) 110–130 ms  
(Avg: 120 ms)

100–120 ms  
(Avg: 110 ms)

115–135 ms  
(Avg: 125 ms)

95–105 ms  
(Avg: 100 ms)

False-Positive Rate (FPR) 4.8%–7.2%  
(Avg: 6%)

5.2%–6.8%  
(Avg: 6.1%)

4.9%–7.5%  
(Avg: 6.2%)

3.5%–5.5%  
(Avg: 4.5%)

Identification Sensitivity (%) 82%–85%  
(Avg: 83.5%)

80%– 84%  
(Avg: 81.8%)

75%–85%  
(Avg: 80%)

86%–92%  
(Avg: 89%)

External ThreatSeverity 5–7 (Avg: 6) 4–6 (Avg: 5) 6–8 (Avg: 7) 3–5 (Avg: 4)

Anomaly Identification Rate (%) 80%–85%  
(Avg: 82%)

75%–90%  
(Avg: 82.5%)

78%–88%  
(Avg: 83%)

85%–95%  
(Avg: 90%)

Identification Accuracy (%) 88% (Avg) 91% (Avg) 85% (Avg) 93% (Avg)

Resource Utilization (%) 65% (Avg) 70% (Avg) 60% (Avg) 55% (Avg)

Identification Speed (per 
second)

60–75 detections/sec  
(Avg: 65)

70–80 detections/sec 
(Avg: 75)

50–70 detections/sec 
(Avg: 60)

85–95 detections/
sec (Avg: 90)

period, indicating a weakening in the system’s ability to 
detect abnormal activities, leaving the network poten-
tially vulnerable to unnoticed external threats.

As shown in Table 1, The Proposed System: Advanced 
IDS shows notable improvements across all key per-
formance metrics compared to the other unautho-
rized access identification framework. In terms of 
identification time, the proposed system outper-
forms the others with an average of 100 ms, which is 
20 ms faster than the second-best system (System 2) 
and 25 msfaster than System 3, indicating a quicker 
response to potential threats. This reduction in 
identification time is crucial for real-time threat 
detection, allowing for a faster response to mitigate 
potential risks. The FPR for the proposed system 
is also superior, with an average of 4.5%, which is 
around 1–1.5% lower than the other framework. This 
lower FPR showcases the system’s ability to minimize 
false alarms, enhancing its reliability and minimizing 
unnecessary actions.

When examining identification sensitivity, the pro-
posed system achieves an impressive range of 86–92% 
(average: 89%), outperforming the others by 3–9%. This 
higher sensitivity allows the proposed system to identify 
true threats more effectively, minimizing the likelihood 
of undetected attacks. The external threat severity 
detected by the proposed system is relatively lower, 
with an average of 4, which is 2 levels lower than System 
3 and 1–2 levels lower than the others. This showcased 
that the system concentrates ondetermining more criti-
cal and potentially damaging threats.

The anomaly identification rate of the proposed system 
is also the highest, with an average of 90%, which is 7–8% 
higher than the other framework. This improvement 
reflects the system’s improved ability to identify unusual 
behaviors, thereby improving the system’s overall threat 
identification accuracy. In terms of identification accu-
racy, the proposed system leads with an average of 93%, 
which is 2–8% higher than the other framework. This high 
accuracy ensures that the system could more effectively 
distinguish between benign and malicious activities, fur-
ther improving its performance in real-world scenarios.

On the resource utilization front, the proposed system 
requires the least resources, utilizing only 55% on aver-
age. In contrast, the other framework needs 60–70%, 
with System 2 demanding the most resources. This lower 
resource usage showcased that the proposed system is 
more efficient in terms of computational load, making 
it more scalable for large network environmental infra-
structure. Finally, in terms of identification speed, the 
proposed system shows the highest identification rate of 
90 detections/sec, notably outperforming System 1 (65 
detections/sec) and System 3 (60 detections/sec). This 
higher identification speed enhances the system’s abil-
ity to manipulateand respond to multiple threats simul-
taneously, improving its overall efficacy in real-time 
monitoring.

Conclusion 

In conclusion, the proposed IDS framework show-
cased a promising performance, but several key areas 
need optimization to enhance its overall effectiveness. 
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