
131Journal of VLSI circuits and systems, ISSN 2582-1458

RESEARCH ARTICLE

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 7, No. 1, 2025 (pp. 131–144)
WWW.VLSIJOURNAL.COM

Learning-Based Ultra-Low-Power Optimization
for VLSI Architectures

Prasanta Panda1, Aruna Tripathy2, Kanhu Charan Bhuyan3

1Principal Data Scientist, Tata Consultancy Services (TCS), India
2Professor, OUTR, School of Electronics Science, India

3Associate Professor, OUTR, School of Electronics Science, India

Abstract
Complicated and dynamic design environments in edge computing, IoT devices, and wear-
able electronics present significant challenges for the growing demand for ultra-low-power
Very-Large-Scale Integration (VLSI) architectures. These systems must manage a wide
range of parameters—including voltage scaling, clock gating, power gating, transistor-level
optimizations, memory subsystem configurations, and interconnect designs. The optimi-
zation process is further complicated by emerging issues such as process variation, aging
effects, thermal constraints, and workload variability. Traditional optimization methods
often struggle to keep up with these evolving demands and highlight the need for new
strategies. A major challenge is the requirement to adjust system configurations in real
time while balancing multiple, often conflicting objectives. Effectively navigating this com-
plex design space calls for a robust, scalable, and adaptive optimization methodology. This
work focuses on addressing these challenges through a structured framework aimed at
achieving ultra-low-power VLSI design. Deep Reinforcement Learning (DRL) helps to maxi-
mize important design parameters, including voltage levels, clock frequencies, core usage,
workload scheduling, and memory configurations, by treating the VLSI design process as a
sequential decision-making issue. Validating the efficiency of the suggested technology,
experimental results reveal that it provides over 22% power reduction over conventional
Dynamic Voltage and Frequency Scaling (DVFS) methodologies.

Author’s e-mail: panda.prashant@gmail.com, atripathy@outr.ac.in, kcbhuyan@outr.ac.in

Author’s Orcid id: 0000-0002-8162-0775, 0000-0002-1576-4594, 0000-0001-8367-397X

How to cite this article: Panda P, et al., Learning-Based Ultra-Low-Power Optimization
for VLSI Architectures, Journal of VLSI circuits and systems, Vol. 7, No.1, 2025 (pp. 131–144).

KEYWORDS:
SoC Power Optimization,
Deep Reinforcement Learning
(DRL),
Low power architecture design

ARTICLE HISTORY:
Received 17-05-2025
Revised 16-06-2025
Accepted 08-07-2025

DOI:
https://doi.org/10.31838/JVCS/07.01.15

Introduction

Unprecedented demand for energy-efficient and
high-performance VLSI architectures [1] has been cre-
ated by the increasing ubiquity of Internet-of- Things
(IoT) devices, wearable electronics, and edge comput-
ing systems. Often confined by limited power budgets
and computing capabilities, these devices call for cre-
ative ideas to balance dependability, performance,
and power usage [2]. Conventional techniques in VLSI
design—such as heuristic-based optimizations, static
analysis, and manual tuning—often struggle to address
the dynamic and complex nature of modern workloads.
Managing trade-offs across multiple factors, including
voltage scaling, clock gating, and transistor-level optimi-
zations, is challenging. Existing methods frequently rely
on fixed models or predefined configurations, which lack

adaptability and limit opportunities for context-specific
optimization. As system requirements evolve and work-
loads grow more diverse, there is a strong need for a
new approach to VLSI design and optimization. A branch
of artificial intelligence, DRL presents a viable answer
to this problem [3]. DRL helps systems to learn from
experience, adapt to changing situations, and simulta-
neously maximize for several goals by characterizing
the VLSI design process as a sequential decision-making
issue [4]. DRL dynamically explores the design space to
find ideal configurations and approximates complicated
relationships using neural networks unlike conventional
approaches [5]. Its potential impact on VLSI design is
demonstrated through applications in areas such as con-
trol systems, hardware design strategies, and resource
optimization. This work presents a control framework

*

mailto:panda.prashant%40gmail.com?subject=
mailto:atripathy@outr.ac.in
mailto:kcbhuyan@outr.ac.in
https://orcid.org/0000-0002-8162-0775
https://orcid.org/0000-0002-1576-4594
https://orcid.org/0000-0001-8367-397X

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

132 Journal of VLSI circuits and systems, ISSN 2582-1458

techniques for power optimization in VLSI systems. DVFS
dynamically adjusts the operating voltage and frequency
based on workload requirements [12], achieving a bal-
ance between power savings and performance using
Reinforcement Learning (RL). Panda et al [13] discussed
accurate load forecasting of processors using ML tech-
niques to achieve higher power efficiency.

RL has emerged as a promising alternative for dynamic
and adaptive power management. RL algorithms, such
as Q-learning and policy gradient methods, have been
applied to various resource management tasks in com-
puting systems [14]. Wang et al. achieved notable power
reductions by showing how Q-learning is applied for run-
time task scheduling in multi-core CPUs [15]. In a same
vein, [16] Panda et al suggested an RL-based DVFS con-
troller with real-time adaptability for changing work-
load. For high-dimensional state and action spaces,
however, conventional RL methods suffer with scalabil-
ity and are therefore less appropriate for sophisticated
VLSI designs.

Combining deep neural networks with RL algorithms to
approximate value functions and policies helps DRL to
overcome these restrictions. The introduction of Deep
Q Networks (DQNs) in [17] represented a major advance
allowing RL to address big-scale challenges [18]. DRL
has been implemented subsequently in many fields,
including resource management in cloud comput-
ing [19], energy optimization in IoT devices [20], and
workload scheduling in embedded systems [21]. These
papers show the great efficiency with which DRL can
solve challenging, dynamic optimization issues.

RL algorithm [22] has been introduced for improving
PPA (Power, Performance and Area) of the chip with
advanced process node (5-16 nm) with Synopsys IC
Compiler II (ICC2). Optimizing it does not call for large
spectrum of values. Chen et al. (2024) [23] demon-
strated a deep reinforcement learning–based power
management framework for chiplet-based multicore
systems, therefore proving significant energy- Delay
Product (EDP) savings via intelligent DVFS control. While
their work addresses dynamically manipulating several
architectural knobs—including clock gating, power gat-
ing, task scheduling, and memory access—in addition to
DVFS—their work concentrates on managing power at
the chiplet level using DQN. This greater control range
allows our method to achieve more complete power
optimization and include thermal and process fluctua-
tion restrictions. Li et al. (2024) [24] looked into edge
device energy-efficient computation wherein deep
reinforcement learning regulates DVFS for multi-task

aimed at improving real-time power management in
VLSI systems. As workload conditions vary, the system
dynamically adjusts key parameters such as voltage,
frequency, clock gating, and memory access techniques
to maintain efficiency and performance [6], Proximal
Policy Optimization (PPO) lets the agent develop a prob-
ability-based policy that efficiently balances thermal
limitations, performance, and power savings, so sur-
passing conventional heuristic-based control methods.
To optimize total power consumption while meeting
performance, thermal, and area constraints, the system
dynamically adjusts key design parameters such as volt-
age-frequency scaling, clock gating, power gating, task
scheduling, and memory access strategies. We show the
effectiveness of the suggested method in obtaining sig-
nificant power saving more than 22% while preserving
system performance within reasonable levels by means
of extensive validation on standard VLSI benchmarks.

This paper is organized mostly as follows. Section 2 cov-
ers relevant work in power optimization for VLSI and
the application of DRL in like fields. Section 3 addresses
the suggested DRL-based approach for ultra-low-power
VLSI designs. Section 4 offers the performance analy-
sis, results, and experimental setup. Section 5 ends the
work with important conclusions and recommendations
for future investigations.

Literature Survey

For last several years, the design of ultra-low-power
VLSI architectures has been a hot topic of study with
different approaches aiming at lowest power consump-
tion without sacrificing system performance. Modern
processors have thoroughly investigated and used con-
ventional approaches such clock gating, power gating,
and stationary voltage scaling to lower dynamic and
leakage power. These techniques, however, frequently
depend on predetermined rules or fixed design-time
assumptions, which restricts their flexibility to real-time
workload variances. This has piqued increasing curiosity
in intelligent and dynamic optimization methods.

Recent developments in machine learning (ML) [7],
[8] open fresh opportunities for power optimization.
Supervised learning approaches have been explored
to predict power-performance trade-offs based on his-
torical workload patterns [9]. The energy consumption
of particular tasks is approximated using a regression
model [10]. While effective in static scenarios, super-
vised learning requires large labelled datasets [11] and
lacks the ability to adapt to unforeseen changes in work-
load conditions. DVFS is one of the most widely adopted

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

133Journal of VLSI circuits and systems, ISSN 2582-1458

Research Gaps and Contributions

While prior works have explored heuristic, machine
learning, and RL-based power optimization, several
challenges remain unaddressed:

1. Most RL-based power optimization studies focus only on
Dynamic Voltage and Frequency Scaling (DVFS), with-
out considering multi-faceted design parameters such
as clock gating, power gating, and process variations.

2. Existing approaches often fail to incorporate real-
time workload variations, limiting adaptability to
dynamic computing environments.

3. Stability issues in DQN-based power optimization
suggest the need for a more robust DRL framework
such as PPO, which ensures stable training through a
clipped objective function.

In this work, we propose a unified PPO-based DRL
framework that jointly optimizes voltage-frequency
scaling, clock gating, power gating, task scheduling, and
memory access strategies. By formulating the ultra-low-
power VLSI design problem as a Markov Decision Process
(MDP), we enable real-time adaptive power management
with enhanced energy efficiency, performance stabil-
ity, and thermal regulation. Our approach represents a
significant step forward in AI-driven VLSI architecture,
bridging the gap between traditional methods and mod-
ern self-learning power optimization techniques.

Methodology

This research employs the Proximal Policy Optimization
(PPO) algorithm, a stable and efficient policy-gradient
method, to optimize ultra-low-power VLSI architectures

systems. Their efforts indicated little power savings by
varying voltage and frequency settings in response to
task demands. While their focus was on DVFS on edge
computing systems, our method spans more broadly
employing reinforcement learning—more specifically
PPO—on a range of architectural controls including
clock gating, power gating, memory optimization, and
task scheduling. This guarantees more complete power
control at the VLSI architectural level by addressing not
only energy efficiency but also temperature, perfor-
mance, and area restrictions.

Notwithstanding these developments, the use of DRL
to ultra-low-power VLSI designs is still mostly unproven.
Although current research has concentrated on specific fac-
tors including DVFS or task scheduling, a complete frame-
work integrating several power management strategies
using DRL is still to be established. Building on the basis
of previous work, this work suggests a DRL-based method
concurrently handles dynamic resource allocation, adaptive
voltage-frequency scaling, and workload management. This
work intends to exceed the limits of energy efficiency in
VLSI systems by using the special features of DRL.

In summary, the literature reveals a clear evolution from
static, heuristic-based methods to adaptive, ML-driven
approaches for power optimization in VLSI architec-
tures. However, the integration of DRL as a holistic solu-
tion for ultra-low-power VLSI systems represents a novel
contribution, which is the focus of this research.

Summary of Comparison

Based on the literature study, the summary has been
outlined in Table-1

Table 1. Comparison Summary of Literature Study

Feature Related Works Present Research

RL Algorithm DQN-based PPO-based (policy-gradient method)

Knobs Controlled Primarily DVFS, Power Gating (PG) DVFS + Clock Gating (CG) + PG + Task Scheduling (TS) +
Memory Optimization (MO)

State Considerations Power, throughput, temp Power, delay, temp, area, Process , Voltage,
Temperature (PVT)

Adaptability Static workloads Dynamic adaptation across blocks

Hardware Modeling Router/converter/cores Full chip-level simulation

Power Optimization Limited to PG, gate sizing, or accelerators System-wide (DVFS, CG, PG, TS, MO)

Reinforcement Learning Q-learning/heuristic tuning PPO (advanced policy-gradient method)

State Space Simplified (few variables) Rich: Voltage, Frequency, Temp, Area, Leakage, etc.

Workload-Awareness Static scenarios Adaptive to workload diversity

Power Saving (%) 15–20% typical ~22–25% demonstrated

Scalability Task-specific or RTL-only Block or chip-level scalable

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

134 Journal of VLSI circuits and systems, ISSN 2582-1458

In this state:

1. The agent might decide to turn on clock gating and
cut the voltage by 0.05 V.

2. Following the action, the surroundings changes sys-
tem metrics (e.g., lowered dynamic power, little
delay increase, lower temperature).

3. Based on these adjustments, the agent then gets
a reward; it stores the tuple in a replay buffer for
training. The symbols and its representations has
been described in Eq.(2) .

After the activity, the environment changes system met-
rics (e.g., lower dynamic power, less change in delay,
lower temperature).

Agent training models based on DQN architecture change
the state-action-value function. Through multi-layer
neural network approximation of Q-values, the DQN
enables the agent to predict long-term benefits of every
action in a given environment. The agent explores the
state space balancing study of new tactics with appli-
cation of learnt policies using an epsilon-greedy pol-
icy. Based on system reactions and observable rewards
over many episodes, the DQN is trained with the agent
iteratively modifying its decision-making strategy. Past
events are preserved, and batch updates are performed
using a replay memory approach, therefore stabilizing
the training process.

At last, in the evaluation stage, the trained DRL agent
is tested on its capacity to dynamically control perfor-
mance and power over a spectrum of workload scenar-
ios. One can verify the effectiveness of the method by
measuring power consumption, latency, energy-delays,
and cumulative rewards. Comparative studies against
baseline approaches—such as heuristic-based DVFS—
showcase the advantages of DRL in establishing optimal
power-performance trade-offs.

This methodology ensures a systematic approach to
ultra-low-power VLSI optimization, offering dynamic
adaptability to changing workloads and constraints,
making it suitable for real-world deployment in ener-
gy-efficient hardware systems.

Problem Formulation

We formalize the ultra-low-power VLSI design optimiza-
tion as a DRL problem, where the PPO algorithm is used
to train an agent for optimal design parameter selection.
The agent learns an optimal policy π* that minimizes

by modeling the problem as a Markov Decision Process
(MDP). The defined state space includes nine key sys-
tem-level parameters: supply voltage, operating fre-
quency, capacitance, dynamic power, leakage power,
die temperature, area overhead, workload characteris-
tics, and process variation. The action space lets one
regulate design-level decisions including voltage and fre-
quency scaling, clock gating, power gating, job sched-
uling, and memory access optimization. The reward
function is designed to direct the agent toward lowest
possible power usage while preserving thermal limita-
tions and performance. It is expressed as described in
Eq. (1) where each term reflects a critical trade-off in
low-power design, and the weights α, β, γ, and δ are
tuned empirically. Stable-Baselines3 and Gymnasium
over 500 episodes allow the PPO agent to be trained in
a simulated VLSI environment where it learns to make
effective control decisions that lower power usage by
roughly 20–25% relative to baseline DVFS approaches.
This method shows how well reinforcement learning can
dynamically optimize challenging VLSI devices.

Environment design, agent training, and evaluation define
the three primary facets of the technique. Environmental
design is followed in the construction of a simulation
model depicting the VLSI system. Surroundings, as the
state space, reflect system factors including voltage,
frequency, workload, power consumption, and so forth.
Among other things, the agent moves in the surrounding
adjusting voltage and frequency levels. The actions influ-
ence the performance and power consumption of the sys-
tem; the surroundings provide the agent with feedback
in form of rewards. The reward function penalizes the
agent for overstepping limits such voltage thresholds or
too severe performance degradation, intended to lower
power consumption and assure sufficient performance.
The reward function is designed to precisely satisfy the
research objective: low total power consumption satisfy-
ing system constraints. It is defined as:

 R(St,At) = αPsaving − βD − γAoverhead − δTdeviation (1)

where
Psaving = Percentage power saved compared to base-
line, D = Performance degradation (execution delay
increase), Aoverhead = Additional area overhead, Tdeviation =
Temperature deviation from an optimal range, α,β,γ,δ =
weighting factor varying between 0 to 1.

To illustrate the process, consider a sample state:

St = { Vt = 0.8 V, ft = 500 MHZ, C, Pdyn,t, Pleak,t),
Tt = 70°C, At,Wt,Θt}

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

135Journal of VLSI circuits and systems, ISSN 2582-1458

performance. This includes techniques such as minimiz-
ing redundant memory accesses, selectively bypassing
caches, controlling prefetching, and placing idle mem-
ory blocks into low-power states.

Task Scheduling (TS): affects delay/performance, possi-
bly increasing or reducing execution time → included as
a constraint or penalty.

Subject to

1. Performance Constraint
 D ≤ Dmax (Ensuring that delay remains within allow-

able limit)
2. Thermal Constraint
 T ≤ Tmax (to prevent overheating)
3. Area Constraint
 Aoverhead ≤ Abudget

4. Voltage-Frequency Scaling Limits
 Vmin ≤ Vt ≤ Vmax, fmin ≤ ft ≤ fmax

PPO Optimization Equations

PPO Policy Optimization
PPO aims to maximize the expected cumulative dis-
counted reward:

 π
π γ

=

 =   ∑ 0
* argmax (,)

H t
t tt

E R S A

(5)

Where
π*: The optimal policy
argmax: Policy π that gives the maximum value of the
expected reward expression.
H: the total number of time steps (or episodes) over
which the cumulative reward is calculated during
training
γt: The discount factor raised to time step t.. It gradu-
ally reduces the weight of future rewards, where 0 < γ <
1. A typical value is 0.99
R(St, At): Reward received when taking action At in state St.

It reflects how good that action was, based on the defined
objectives (like power saving, delay penalties, etc.).

PPO Clipped Objective Function
To ensure stability and prevent large updates, PPO uses
a clipped surrogate objective

 L(θ) = E[min(rt(θ)At,clip(rt(θ),1 − ϵ,1 + ϵ) At)] (6)

where

() ()
()

|

|
old

t t
t

t t

a s
r

a s
θ

θ

π
θ

π
= = Ratio of new to old policy probabilities

π

total power consumption while maintaining system per-
formance, thermal constraints, and design feasibility.

1. Markov Decision Process (MDP)
 State Space (S):

 St = {Vt,ft,C,Pdyn,t,Pleak,t,Tt,At,Wt,Θt} (2)

 where
 Vt = Supply voltage at time t, ft = Operating fre-

quency at t, C = Capacitance per transistor, Pdyn,t =
Dynamic power at t, Pleak,t) = Leakage power at t,
Tt = Die temperature at t, At = Area overhead at t,
Wt = Workload characteristic at t , Θt = Process vari-
ation parameter at t

 Action space (A):

 At = {ΔVt, Δft, CGt, PGt, TSt, MOt} (3)
 where
 ΔVt = Change in voltage, Δft = Change in frequency,

CGt = Clock gating decision, PGt = Power gating deci-
sion, TSt = Task Scheduling, MOt = Memory access
optimization

 Reward Function (R):
 The reward function is shown as stated in the Eq. (1)

2. Objective Function
 The agent learns to minimize total power consump-

tion while respecting performance, thermal, and
area constraints.

min .
CG PG MOtotal dyn leak saved saved saved D TSP P P P P P D

π
λ= + − − − +

 (4)

 where
 Pdyn = C.V2.f, Pleak = V.Ileak(T,W,Θ)
 PsavedCG

- Power saved due to clock gating
 PsavedPG

 - power saved due to power gating
 PsavedMO

 - power saved via memory access optimization
 DTS - Delay introduced or mitigated via task scheduling
 λD- Weighting factor for performance penalty

Clock Gating (CG): reduces dynamic power by disabling
idle clocks → reduces Pdyn

Power Gating (PG): cuts off power supply to unused
blocks → reduces Pleak

Memory Optimization (MO): improves cache/memory
efficiency → reduces both dynamic power and EDP. It
refers to the dynamic control of memory operations to
reduce power consumption while maintaining system

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

136 Journal of VLSI circuits and systems, ISSN 2582-1458

 Where Psaving is power saved compared to base-
line, and other terms penalize performance
loss, area, overhead, and excessive heat.

4. Store experience (St,At,Rt,St+1) in replay buffer D
8. end for

C. PPO Policy Update [at the End of Each Episode
Based on the Last K Transitions]
9. Sample a mini-batch of (Si, Ai, Ri, Si+1) from

buffer D
10. Compute advantage function Ai

 Ai = Q(Si,Ai) − Vb(Si)

11. Compute sampling ratio :

() ()

()
|

|

old

i i
i

i i

A S
r

A S
θ

θ

π
θ

π
=

(9)

12. Compute PPO loss function:

 L(θ) = E[min(ri(θ)Ai, clip(ri(θ),1 − ϵ,1 + ϵ)Ai)] (10)

13. Update policy network πθ using gradient ascent:

 θnew ← θold + η∇θL(θ) (11)

14. Update the value function Vϕ using temporal dif-
ference loss:

 LV(∅)=E[(V∅(Si) − (Ri + γV∅(Si+1)))
2] (12)

15. Update ∅ via gradient descent

 θnew ← θold + η∇θLv(∅) (13)

D. Episode Termination and Exploration Decay
16. End episode if maximum steps T reached or sys-

tem reaches steady-state.
17. Gradually reduce the exploration rate (ε)

E. Repeat Until Convergence
18. Repeat until policy πθ converges to an opti-

mal solution, minimizing power while satisfying
constraints.

Network Architecture

The PPO agent is implemented using an actor-critic
architecture, where both the actor (policy network) and
critic (value function network) share a similar multi-
layer feedforward design. The input to the network
corresponds to the system’s state vector, comprising
parameters such as voltage, frequency, dynamic and

At = Advantage function (reward relative to baseline)
ϵ = Clipping parameter

Advantage Function (At)
 At = Q(st, at) − Vb(st) (7)
where
Q(st,at) = Expected cumulative reward for state action
pair, Vb(st) = Baseline value function estimate

Policy Update Rule
The network is updated using stochastic gradient ascent

 θnew←θold + η∇θL(θ) (8)

η = learning rate
θnew = The updated parameter value
θold = The previous parameter value
∇θL(θ) = The gradient of the loss function L(θ) with
respect to the parameters θ. It shows the direction and
magnitude of the steepest ascent of the loss function.

Proposed Algorithm

A. Initialize Environment and Hyperparameters
1. Initialize replay buffer D to a fixed size.
2. Initialize policy network parameters θ randomly.
3. Initialize value network parameters ϕ randomly.
4. Set discount factor γ, clipping parameter ϵ,

exploration rate ϵexplore , and other hyperparame-
ters (learning rate, batch size etc.).

5. Set number of episodes N and maximum steps
per episode H.

B. Training Loop (for Each Episode e)
6. Initialize state S0 = {V0, f0,C,Pdyn,0),Pleak,0,T0, A0, W0,Θ0}
7. for each episode t = 1, …, K, do:

1. Select an action At based on policy πθ (At|St):
1. At = {ΔVt, Δft, CGt, PGt, TSt, MOt}
2. If ϵexplore is active, select random action

with probability ϵexplore

2. Apply action At to update design parameters
and obtain new state St+1:
1. Compute new power
 Pdyn,t+1 = C.V2

t+1.ft+1, Pleak,t+1 = Vt+1.Ileak(Tt+1,Wt+1,
Θt+1), PCG(t+1), PPG(t+1),PMO(t+1), λD.DTS(t+1)

 Ptotal,t+1 = Pdyn,t+1 + Pleak,t+1 − PCG(t+1) − PPG(t+1) −
PMO(t+1) + λD.DTS(t+1)

2. Compute new temperature Tt+1 based on
thermal dissipation model

3. Compute new delay Dt+1 based on voltage
and frequency scaling

3. Compute reward (Rt):

 Rt = αPsaving − βD − γAoverhead − δTdeviation

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

137Journal of VLSI circuits and systems, ISSN 2582-1458

parameters. These values are updated at each step
based on control inputs.

Thermal Modeling: A simplified thermal model estimates
temperature (T) based on power dissipation and thermal
resistance. This captures heat buildup from workload
activity and its effect on performance and leakage.

Dynamic Voltage-Frequency Scaling (DVFS): The sys-
tem adjusts voltage and frequency levels based on
predefined control inputs. These adjustments impact
both performance, through delay modeling, and power
consumption.

Workload Simulation: Synthetic or trace-based workloads
are used to drive core and memory activity, simulating
system behavior under realistic computational conditions.

Process Variation & Aging Effects: Randomized perturba-
tions are added to parameters such as threshold voltage
and leakage current to simulate variations caused by
manufacturing imperfections and wear-out effects.

The experiment evaluates a power optimization method
for VLSI architectural design by simulating a control
system that manages memory access, task scheduling,
power gating, and voltage and frequency adjustments.
The simulation environment includes parameters such as
supply voltage, operating frequency, dynamic and leak-
age power, die temperature, area overhead, workload
patterns, and process variations. Control actions include
voltage and frequency scaling, clock gating, power gat-
ing, task allocation, and memory access strategies. Over
the course of 500 simulation runs, the system identi-
fies effective techniques to reduce power consumption
while meeting performance requirements. Results indi-
cate that, under varying workloads, the method achieves
approximately 20–25% power reduction. The improve-
ment trend over time reflects the system’s increas-
ing efficiency in making power-conscious decisions.
Comparative analysis with traditional power manage-
ment techniques shows that this approach provides nota-
ble energy savings while adapting to workload changes.
The optimization framework is applicable at both block-
level and chip-level in VLSI design, depending on how the
system and constraints are modeled. At the block level,
it supports fine-grained control of individual components
such as ALUs, memory units, or cache blocks, enabling
targeted optimizations like localized voltage scaling,
clock gating, or memory control. This level of abstraction
is especially useful in early- stage design evaluations due
to its lower complexity and faster simulation cycles.

leakage power, temperature, area overhead, workload
characteristics, and process variation. The network con-
sists of two fully connected hidden layers, each with
128 neurons and ReLU activation functions. The actor
network outputs a probability distribution over discrete
actions—including voltage/frequency scaling, clock gat-
ing, power gating, task scheduling, and memory access
optimization—using a softmax layer. The critic network
outputs a single scalar value representing the expected
cumulative reward (state value). This architecture bal-
ances computational efficiency and representation
capacity, making it suitable for training in a high-dimen-
sional, multi-objective optimization environment.

Results and Analysis

The experiment has been performed in a simulated VLSI
design environment using Python-based frameworks.
The Reinforcement Learning-based PPO algorithm has
been implemented using Stable-Baselines3 in Python
with PyTorch as the deep learning backend. The data
for the training phase is generated synthetically through
a simulated VLSI design environment. Incorporating
dynamic power, leakage power, voltage-frequency scal-
ing, and workload characteristics, the simulation envi-
ronment simulates VLSI architectural behavior. The state
and action spaces have been defined using Gymnasium,
originally OpenAI Gym, therefore enabling agent inter-
action with the surroundings. The agent sees a state
made of these parameters at every time step, chooses
an action (e.g., frequency or voltage), and gets a cor-
responding reward depending on power economy and
constraint satisfaction. Stored and utilized for training
the agent using the Proximal Policy Optimization (PPO)
method, this interaction loop generates sequences of
state-action-reward-next state tuples. This method
ensures safe, scalable, and repeatable experimentation
by enabling comprehensive evaluation without relying
on physical chip measurements.

Component Modeling: From core to memory to inter-
connect, every functional unit—models as an object
with associated behaviors and attributes. A processing
core is characterized by variables such as voltage (V),
frequency (f), dynamic power ((Pdyn), leakage power
(Pleak),), and temperature (T), all of which change over
time based on control inputs and workload conditions.

Power Modeling: Dynamic power is computed using the
equation Pdyn = C.V2.f where capacitance (C) is a design
constant. Leakage power is modeled as a function of
voltage, temperature, workload, and process variation

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

138 Journal of VLSI circuits and systems, ISSN 2582-1458

This research is not tied to a specific commercial proces-
sor but is designed to be processor-agnostic by operating
within a simulated VLSI design environment. The simu-
lation abstracts key components of a generic process-
ing system, such as cores, memory, and interconnects,
and models dynamic behaviors like voltage-frequency
scaling, leakage power, and thermal effects. However,
for practical relevance and alignment with current low-
power design trends, the environment parameters and
design constraints are inspired by modern embedded
processors and SoCs (System-on-Chips) commonly used
in edge devices, IoT platforms, and wearables — such
as processors based on ARM Cortex-M or RISC-V microar-
chitectures in technology nodes ranging from 28 nm to
7 nm.

For the proposed ultra-low-power VLSI optimization
framework using Deep Reinforcement Learning (DRL),
the recommended technology node for data collec-
tion and simulation is 22 nm FD-SOI. These nodes are
widely adopted in low-power applications such as edge
computing, IoT devices, and wearable electronics due
to their favorable trade-offs between performance,
power efficiency, and design complexity. Both nodes
provide a realistic and well-characterized design space
that allows effective modeling of dynamic and leakage
power, temperature-dependent behaviors, and process
variations—critical factors in the reinforcement learning
environment. Furthermore, accessible for these nodes
are large public datasets and open-source predictive
technology models (e.g., PTM and BSim-CMG), which
fit academic research without depending on access to
private PDKs. 22 nm node provides a reasonable level
of complexity for simulation while keeping represent-
ing modern low-power design restrictions, compared to
advanced nodes like 7 nm or 5 nm which demand signifi-
cant computational and modeling overhead due of quan-
tum effects and IR drop problems. These technological
nodes enable both design exploration and practical rel-
evance by helping identify an optimal combination for
verifying the proposed method.

Hardware Correlation and Framework
To ensure physical realizability and practical relevance,
the control signals are explicitly mapped to established
architectural and RTL-level power management mech-
anisms in VLSI systems. Each control parameter corre-
sponds to a design feature that can be implemented either
in the architectural specification or RTL logic. For exam-
ple, adjustments in voltage (ΔVt) and frequency (Δft) are
managed through dynamic voltage and frequency scaling
(DVFS) modules, typically implemented using on-chip volt-
age regulators and programmable Phase-Locked Loops

Hyperparameter Tuning: Stable and efficient training
of the Proximal Policy Optimization (PPO) agent in the
VLSI optimization system was guaranteed by hyperpa-
rameter adjustment. Using a manual grid search, key
hyperparameters including learning rate, discount fac-
tor (λ), clipping parameter (ε), batch size, number of
epochs, and exploration rate were methodically set.
Different combinations of these values were inves-
tigated, and their effects were assessed using stabil-
ity of learning, agent total reward, and power savings
attained. With a learning rate of 2.5e-4, a discount
factor of 0.99 to balance short-term and long-term
rewards, and a clipping value of 0.2 to stop signifi-
cant policy changes, the best-performing setup was
Performance and computational efficiency were found
to be satisfactorily balanced by a batch size of 128 and
5–10 PPO update epochs each episode. Training gradu-
ally reduced the exploration rate to enable the agent
to first explore the design space then subsequently
utilize learnt techniques. Achieving convergence and
strong performance under several workload conditions
in the simulated VLSI environment depends on this tun-
ing procedure.

Power Saving: Power saving is calculated by comparing
the total power consumption of the VLSI system before
and after applying the Deep Reinforcement Learning
(DRL)-based optimization strategy. Specifically, during
each episode, the total power consumed using the pro-
posed PPO-trained agent (denoted as is recorded and
compared against a baseline method such as traditional
Dynamic Voltage and Frequency Scaling (DVFS) or static
configuration (denoted as Pbaseline).

 () % 100baseline DRL

baseline

P P
PowerSaving

P
−

= × (14)

Here:

• Pbaseline is the average power consumption under con-
ventional techniques across the same workload and
conditions.

• PDRL is the power consumption after applying DRL-
based control decisions (voltage/frequency adjust-
ments, clock gating, etc.).

This is performed across multiple test workloads and
time steps, and the average percentage reduction
indicates the effectiveness of the optimization. In the
experiment, power savings of approximately 20–25%
were consistently observed, demonstrating the agent’s
capability to minimize energy usage while respecting
performance constraints.

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

139Journal of VLSI circuits and systems, ISSN 2582-1458

and energy per operation (EPO). Experimental results
show that the PPO-trained agent consistently outper-
forms the heuristic baseline across multiple workload
scenarios. While retaining performance within 5% of
the baseline delay and keeping area overhead below 3%
due to minimum reconfiguration logic, the DRL tech-
nique generally delivered a 20–25% reduction in total
power usage. Furthermore, the energy per operation
dropped by 22%, suggesting over time better energy
economy. Unlike fixed heuristics without environmental
knowledge, these gains result from the agent’s ability
to adaptively and contextually apply fine-grained control
actions. This comparison shows how well DRL balances
performance and power in challenging VLSI design envi-
ronments over conventional rule-based methods.

Scalability and Generalizability
We examined the performance of the proposed DRL-
based optimization framework over a range of sample
VLSI design blocks and workloads in order to show its
universal applicability and robustness. Each of these
computationally intense units— multiply-accumulate
(MAC), arithmetic logic units (ALUs), FIR filters, and sca-
lar processing cores—show different power-performance
characteristics and dynamic behavior. Synthetic work-
loads for every block were meant to replicate actual
operational patterns, ranging in low-throughput control
tasks to high-throughput signal processing. Each block
was modeled with its own power, delay, and tempera-
ture profile in a unified environment under training for
the DRL agent. Results reveal that the agent effectively
modified its policy to fit any workload environment, pre-
serving a constant 20–25% power savings and ensuring
performance within reasonable limits over all blocks.
These results confirm the adaptability of the framework
and its capacity to be generalized over heterogeneous
functional units, so fitting for use in several low-power
SoC applications. Additional help comes from power-sav-
ing comparisons included in the additional study and
workload-specific performance graphs.

1. Reward vs. Episodes
The cumulative reward function converges over multi-
ple episodes, indicating that the reinforcement learning
agent successfully learns optimal policies for power and
performance trade-offs. The Reward vs. Episodes graph
as shown in Fig. 1 illustrates the cumulative reward pro-
gression over 500 training episodes. Initially, the reward
fluctuates significantly and even decreases, indicating
the agent’s exploration phase where it learns the optimal
policy. Around the mid-training phase (~250 episodes),
the reward begins to stabilize and shows an upward
trend, signifying improved policy learning. Towards the

(PLLs). Clock gating (CGt) is achieved through RTL-level
logic that disables specific registers or pipeline stages
during idle periods. Power gating (PGt) involves controlling
power switches at the block level using power islands. Task
scheduling (TSt) determines how workloads are distributed
across multiple cores or functional units and is handled
through architectural-level control logic or firmware-based
balancers. Lastly, memory optimization (MOt) aligns with
memory controller parameters such as prefetching, cache
bypassing, or low-power memory modes. This explicit
mapping demonstrates how the DRL agent’s decisions can
be translated into real-time reconfiguration of hardware,
bridging the gap between high-level learning algorithms
and practical VLSI implementation.

Simulation Environment and Setup
The proposed framework is implemented using a system-
level simulation environment developed in Python to
model the behavior of power-aware VLSI architectures.
The environment captures key architectural parameters
such as supply voltage, operating frequency, workload
intensity, dynamic and leakage power, area overhead,
and die temperature. Reinforcement learning inter-
action is facilitated through the Gymnasium (formerly
OpenAI Gym) interface, while the PPO agent is trained
using the PyTorch framework in conjunction with Stable-
Baselines3. Power estimation is based on standard CMOS
models, leakage power is modeled as Pleak = V.Ileak (T,W,Θ),
as a function of temperature, workload, and process vari-
ation. The simulation assumes a 22 nm FD-SOI process
node, representative of modern low-power design tech-
nologies with significant sensitivity to leakage and ther-
mal variation. Also, the framework is readily extensible
to lower technology nodes (e.g., 7 nm, 5 nm) by updat-
ing the power, leakage, and process variation models
accordingly. This flexibility ensures the adaptability of
the proposed DRL framework to future VLSI technologies.
Although this study focuses on algorithm development
and validation using high-level models, the framework is
structured to support future integration with RTL simula-
tion or co-simulation environments such as Verilator or
gem5+McPAT for cycle-accurate or power-accurate val-
idation. This abstraction enables rapid experimentation
while maintaining physical design relevance.

Quantitative Evaluation and Benchmarking
To demonstrate the effectiveness of the proposed DRL-
based optimization framework, we performed a com-
parative analysis against traditional heuristic methods,
specifically a rule-based DVFS scheme and static clock/
power gating strategies commonly used in embedded
system designs. The evaluation metrics include total
power consumption, execution delay, area overhead,

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

140 Journal of VLSI circuits and systems, ISSN 2582-1458

implies that the reinforcement learning agent keeps
voltage variations low to improve energy economy and
actively tunes frequency to maximize performance.
Complementing ultra-low-power VLSI architecture, the
controlled voltage scaling speaks to an endeavor to bal-
ance power consumption with system stability.

4. Energy-Delay Product (EDP) vs. Episodes
Using the Energy-Delay Product (EDP) against Episodes
graph, Fig. 4 shows the trade-off between energy effi-
ciency and performance delay across 500 episodes.
Since VLSI architecture balance computational delay
with power consumption, its optimization relies mostly
on the EDP measure. Graph fluctuations reveal that
response to varying workloads and system constraints
constantly changing performance and power parameters
in the PPO-based reinforcement learning agent. Absence
of a distinct increasing or dropping trend suggests that
the agent is effectively regulating energy-delay trade-
offs, thereby limiting too high energy consumption while
maintaining performance. This work focuses on the
effectiveness of RL-based power optimization in obtain-
ing a balanced and efficient hardware design.

5. Power Saving vs. Episodes
Fig. 5 presents the graph of power saving illustrating the
variance in power efficiency obtained by the RL-based
PPO agent throughout 500 episodes. Reflecting the
instantaneous power savings %, the blue line displays
changes resulting from dynamic workload variations and
the agent’s adaptive power management strategies at
every episode. Presenting the average power saving of
22.48% the red dashed line reveals. The noted variations

later episodes, the cumulative reward increases signifi-
cantly, demonstrating that the PPO agent successfully
optimizes power savings while balancing performance,
thermal, and area constraints. The upward trajectory
validates the effectiveness of reinforcement learning in
optimizing VLSI design parameters.

2. Power Consumption vs. Episodes
Power consumption variations across episodes high-
light the system’s adaptive nature in optimizing energy
usage. The DRL model effectively minimizes power
consumption compared to a baseline by adjusting volt-
age levels, frequency, and gating strategies etc. The
Power Consumption vs. Episodes graph of Fig. 2 shows
the variation in power consumption (in watts) over 500
training episodes. The fluctuations indicate that the
reinforcement learning agent is dynamically adjusting
design parameters such as voltage, frequency, clock
gating, and power gating to optimize power efficiency.
While there is significant variability, the trend suggests
that the agent is exploring different power management
strategies to balance energy savings with performance
constraints. The scattered yet controlled oscillations
indicate an adaptive approach to maintaining power effi-
ciency without exceeding operational limits.

3. Voltage and Frequency Scaling
The dynamic variations in supply voltage (green) and
operating frequency (blue) indicated in the Voltage and
Frequency Scaling graph in Fig. 3 over 500 episodes.
Within a smaller range—between 0.8 V and 1.2 V—the
voltage is quite consistent; the frequency exhibits clear
oscillations between roughly 1.0 GHz and 3.0 GHz. This

Fig. 1: Rewards vs. Episode

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

141Journal of VLSI circuits and systems, ISSN 2582-1458

Fig. 2: Power Consumption vs. Episodes

Fig. 3: Voltage and Frequency Scaling vs. Episodes

suggest that the agent uses power depending on work-
load conditions reasonably successfully and keeps system
restrictions. This exposes how well the reinforcement
learning approach increases power efficiency for VLSI
designs, therefore providing a possible option for ener-
gy-aware design approaches.

Software & Hardware Requirement

This work evaluates power optimization techniques with-
out the need for physical silicon prototypes by means
of simulated VLSI environments. Custom-made VLSI sys-
tem model written in Python is used in the simulation

environment with Python including voltage, frequency,
switching activity, leakage currents, thermal behavior,
and area overhead. Standard power and performance
models—including dynamic power equations (as detailed
in Section 3.1 -> Objective Function) and leakage models
dependent on temperature and process—inform the envi-
ronment simulation. To reflect reasonable VLSI operation
scenarios, the simulation permits controlled adjustment
of workload characteristics, process variations (Θt) and
heat profiles. For data processing and visualization, the
software stack calls for Python 3.10, NumPy, Matplotlib,
and Pandas. TensorFlow and PyTorch frameworks are
applied in Deep Reinforcement Learning (DRL) techniques.

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

142 Journal of VLSI circuits and systems, ISSN 2582-1458

Fig. 4: EDP vs. Episodes

Fig. 5: Average Power Saving vs. Episode

The simulated environment provides APIs through which
the DRL agent interacts with system states and performs
actions such as voltage scaling, frequency adjustment,
clock gating, and task scheduling. The hardware setup
consists of a High-Performance Computing (HPC) worksta-
tion equipped with an Intel Xeon or AMD EPYC processor
(32 cores), 64 GB RAM, and an NVIDIA RTX 3090 GPU. The
operating system is Ubuntu 22.04 LTS with CUDA 12.2 and
cuDNN libraries enabled for GPU acceleration.

Power Measurement and Evaluation Methodology
Since the experiments are based on a simulated envi-
ronment, the power consumption is calculated internally

using the analytical power models embedded within
the simulation engine. Specifically, dynamic power and
leakage power are computed per state transition based
on activity factors, operating voltage, temperature, and
switching capacitance. The external mention of a “power
measurement unit” refers to future physical validation;
however, in this study, no physical measurement unit is
used. Instead, all power data is extracted from simulation
logs generated after each interaction episodes. The cumu-
lative energy and Energy-Delay Product (EDP) are also
computed using the logged power and performance data
over time to assess the agent’s optimization effective-
ness. Thus, the measurement is purely simulation-based

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

143Journal of VLSI circuits and systems, ISSN 2582-1458

can be enhanced through actual implementation and
validation on FPGA or ASIC platforms.

Acronyms

PDKs - Process Design Kit
SAC - Soft Actor-Critic
DVFS - Dynamic Voltage and Frequency Scaling
EDP - Energy-Delay Product
DRL - Deep Reinforcement Learning
PPO - Proximal Policy Optimization
HPC - High-Performance Computing
BSIM-CMG - Berkeley Short-channel
IGFET Model - Common Multi-Gate
MDP - Markov Decision Process
IoT - Internet-of-Things
HLS- High-Level Synthesis
ASIC-Application Specific Integrated Circuit
FPGA- Field Programmable Gate Array
EDA- Electronic Design Automation
HPC- High Performance Computing
PLL – Phase Locked Loop
RTL- Register Transfer Logic

References

1. Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ...
& Pan, Y. (2023). Intelligent computing: The latest
advances, challenges, and future. Intelligent Computing,
2, 0006. https://doi.org/10.34133/icomputing.0006

2. Popli, S., Jha, R. K., & Jain, S. (2018). A survey
on energy efficient narrowband Internet of Things
(NB-IoT): Architecture, application and challenges.
IEEE Access, 7, 16739–16776. https://doi.org/10.1109/
ACCESS.2018.2881533

3. Du, W., & Ding, S. (2021). A survey on multi-agent
deep reinforcement learning: From the perspective
of challenges and applications. Artificial Intelligence
Review, 54(5), 3215–3238. https://doi.org/10.1007/
s10462-020-09938-y

4. Amuru, D., Zahra, A., Vudumula, H. V., Cherupally, P.
K., Gurram, S. R., Ahmad, A., & Abbas, Z. (2023). AI/ML
algorithms and applications in VLSI design and technol-
ogy. Integration, 93, 102048. https://doi.org/10.1016/j.
vlsi.2023.06.002

5. Zhou, Y., Zhou, L., Yi, Z., Shi, D., & Guo, M. (2024).
Leveraging AI for enhanced power systems control: An
introductory study of model-free DRL approaches. IEEE
Access. https://doi.org/10.1109/ACCESS.2024.3422411

6. Kumar, V. (2025). A proximal policy optimization based
deep reinforcement learning framework for track-
ing control of a flexible robotic manipulator. Results
in Engineering, 104178. https://doi.org/10.1016/j.
rineng.2025.104178

7. Panda, P., Tripathy, A., & Bhuyan, K. C. (2024). Detecting
fraudulent pattern through key stroke dynamics using
machine learning algorithm. In IEEE International

but modeled to closely mimic physical behaviors validated
against known VLSI power estimation standards.

Application Context and Impact

The proposed DRL-based optimization framework can
be integrated into real-world low-power ASIC or FPGA
design flows by embedding it within the early design
exploration or dynamic runtime control stages. During
pre-silicon design, the trained DRL agent can guide High-
Level Synthesis (HLS) or architectural-level optimiza-
tion tools to select power-efficient configurations, such
as voltage- frequency pairs, clock gating strategies, and
resource allocation, which are then mapped into RTL
using standard EDA flows. For post-silicon deployment,
the trained policy can be implemented as a lightweight
firmware controller or hardware block to perform
dynamic power management based on real-time system
states. Integration with existing EDA toolchains, such
as Synopsys Power Compiler or Cadence Joules, would
require exporting the DRL-derived control policies into
constraint or script formats interpretable by these tools.
One key challenge is the computational cost of DRL
training, which can be mitigated by using high-level sim-
ulations for training and transferring the learned policy
to hardware through model compression or quantiza-
tion. Another challenge is model fidelity, as real hard-
ware behavior may differ from the training environment;
this can be addressed through co- simulation with RTL
models or trace-based fine- tuning. Overall, the frame-
work is adaptable and offers a path toward intelligent,
learning-based power management in modern ASIC and
FPGA systems.

Conclusion and Future Work

This work presents a way to use PPO to improve ultra-
low-power VLSI designs through reinforcement learning.
By altering voltage, frequency, and power management
strategies on the fly, the model greatly reduces power
use while keeping performance constraints. The stable
reward function shows that the reinforcement learn-
ing agent learns the best rules based on the results.
Dynamic Voltage and Frequency Scaling (DVFS) works
well for changes in workload, but patterns in power use
suggest possible ways to save energy. The Energy-Delay
Product (EDP) also illustrates how well the system keeps
a balance between speed and energy efficiency. This
method can be expanded for further projects by add-
ing extra hardware limitations, refining the optimization
criteria to better balance power and performance, and
incorporating thermal-aware design strategies. Practical
relevance for next-generation low-power VLSI systems

Panda P et al.
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

144 Journal of VLSI circuits and systems, ISSN 2582-1458

Networks (CINE), Bhubaneswar. https://doi.org/10.1109/
CINE63708.2024.10881312

19. Gupta, S., & Singh, N. (2023). Toward intelligent resource
management in dynamic Fog Computing-based Internet of
Things environment with deep reinforcement learning: A
survey. International Journal of Communication Systems,
36(4), e5411. https://doi.org/10.1002/dac.5411

20. Yi, M., Yang, P., Chen, M., & Loc, N. T. (2022). A DRL-
driven intelligent joint optimization strategy for compu-
tation offloading and resource allocation in ubiquitous
edge IoT systems. IEEE Transactions on Emerging Topics
in Computational Intelligence, 7(1), 39–54. https://doi.
org/10.1109/TETCI.2022.3193367

21. Li, J., Jiang, W., He, Y., Yang, Q., Gao, A., Ha, Y., ... &
Yu, H. (2024). FiDRL: Flexible invocation-based deep
reinforcement learning for DVFS scheduling in embedded
systems. IEEE Transactions on Computers. https://doi.
org/10.1109/TC.2024.3465933

22. Y. C., Nath, S., Khandelwal, V., & Lim, S. K. (2021).
RL-Sizer: VLSI gate sizing for timing optimization using
deep reinforcement learning. In 58th ACM/IEEE Design
Automation Conference (DAC).

23. Li, X., Chen, L., Chen, S., Jiang, F., Li, C., Zhang, W., &
Xu, J. (2024). Deep reinforcement learning-based power
management for chiplet-based multicore systems. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems. https://doi.org/10.1109/TVLSI.2024.3415487

24. Li, X., Zhou, T., Wang, H., & Lin, M. (2024). Energy-
efficient computation with DVFS using deep reinforce-
ment learning for multi-task systems in edge computing.
arXiv preprint, arXiv:2409.19434.

25. Sathish Kumar, T. M. (2024). Developing FPGA-based
accelerators for deep learning in reconfigurable com-
puting systems. SCCTS Transactions on Reconfigurable
Computing, 1(1), 1–5. https://doi.org/10.31838/
RCC/01.01.01

26. Kavitha, M. (2024). Energy-efficient algorithms for
machine learning on embedded systems. Journal of
Integrated VLSI, Embedded and Computing Technologies,
1(1), 16–20. https://doi.org/10.31838/JIVCT/01.01.04

27. Alnumay, W. S. (2024). Use of machine learning for the
detection, identification, and mitigation of cyber-attacks.
International Journal of Communication and Computer
Technologies, 12(1), 38–44. https://doi.org/10.31838/
IJCCTS/12.01.05

28. Madhanraj. (2025). Unsupervised feature learning for
object detection in low-light surveillance footage. National
Journal of Signal and Image Processing, 1(1), 34–43.

29. Sindhu, S. (2025). Voice command recognition for smart
home assistants using few-shot learning techniques.
National Journal of Speech and Audio Processing, 1(1),
22–29.

Conference on Advancements in Smart, Secure and
Intelligent Computing (ASSIC), Bhubaneswar. https://doi.
org/10.1109/ASSIC60049.2024.10508017

8. Panda, P., Sahoo, D., & Sahoo, D. (2024). Automating
fault prediction in software testing using machine
learning techniques: A real-world application. In IEEE
International Conference on Sustainable Computing
and Smart Systems (ICSCSS). https://doi.org/10.1109/
ICSCSS60660.2024.10625524

9. ul Islam, F. M. M., Lin, M., Yang, L. T., & Choo, K. K. R.
(2018). Task aware hybrid DVFS for multi-core real-time
systems using machine learning. Information Sciences,
433, 315–332. https://doi.org/10.1016/j.ins.2017.08.042

10. Khan, T., Tian, W., Ilager, S., & Buyya, R. (2022).
Workload forecasting and energy state estimation
in cloud data centres: ML-centric approach. Future
Generation Computer Systems, 128, 320–332. https://doi.
org/10.1016/j.future.2021.10.019

11. Lwakatare, L. E., Raj, A., Crnkovic, I., Bosch, J., & Olsson,
H. H. (2020). Large-scale machine learning systems in
real-world industrial settings: A review of challenges and
solutions. Information and Software Technology, 127,
106368. https://doi.org/10.1016/j.infsof.2020.106368

12. Gupta, M., Bhargava, L., & Indu, S. (2021). Dynamic
workload-aware DVFS for multicore systems using
machine learning. Computing, 103, 1747–1769. https://doi.
org/10.1007/s00607-020-00845-2

13. Panda, P., Tripathy, A., & Bhuyan, K. C. (2025). Accurate
load prediction in dynamic voltage frequency scaling sys-
tems. Journal of Integrated Circuits and Systems, 20(1),
1–14. https://doi.org/10.29292/jics.v20i1.977

14. Dai, J., & Liu, Z. (2022). Q-learning based DVFS for
multi-core real-time systems. In Advances in Natural
Computation, Fuzzy Systems and Knowledge Discovery.
Springer. https://doi.org/10.1007/978-3-030-89698-0_35

15. Wang, Y., Zhang, W., Hao, M., & Wang, Z. (2021). Online
power management for multi-cores: A reinforcement
learning based approach. IEEE Transactions on Parallel
and Distributed Systems, 33(4), 751–764. https://doi.
org/10.1109/TPDS.2021.3092270

16. Panda, P., Tripathy, A., & Bhuyan, K. C. (2024).
Reinforcement learning-based dynamic voltage and
frequency scaling for energy-efficient computing. In
International Conference on Distributed Computing and
Electrical Circuits and Electronics (ICDCECE). https://doi.
org/10.1109/ICDCECE60827.2024.10549241

17. Mnih, V. (2013). Playing Atari with deep reinforcement
learning. arXiv preprint, arXiv:1312.5602.

18. Panda, P., Sahoo, D., & Sahoo, D. (2024). Deep rein-
forcement learning for real-time robotic control in
dynamic environments. In IEEE 6th International
Conference on Computational Intelligence and

	_Hlk196732086
	_GoBack
	_Hlk196732421
	_Hlk196732840
	_Hlk202547752
	_Hlk196733194
	_Hlk196733274
	_Hlk196733320
	_Hlk196733353
	_GoBack

