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Abstract
Complicated and dynamic design environments in edge computing, IoT devices, and wear-
able electronics present significant challenges for the growing demand for ultra-low-power 
Very-Large-Scale Integration (VLSI) architectures. These systems must manage a wide 
range of parameters—including voltage scaling, clock gating, power gating, transistor-level 
optimizations, memory subsystem configurations, and interconnect designs. The optimi-
zation process is further complicated by emerging issues such as process variation, aging 
effects, thermal constraints, and workload variability. Traditional optimization methods 
often struggle to keep up with these evolving demands and highlight the need for new 
strategies. A major challenge is the requirement to adjust system configurations in real 
time while balancing multiple, often conflicting objectives. Effectively navigating this com-
plex design space calls for a robust, scalable, and adaptive optimization methodology. This 
work focuses on addressing these challenges through a structured framework aimed at 
achieving ultra-low-power VLSI design. Deep Reinforcement Learning (DRL) helps to maxi-
mize important design parameters, including voltage levels, clock frequencies, core usage, 
workload scheduling, and memory configurations, by treating the VLSI design process as a 
sequential decision-making issue. Validating the efficiency of the suggested technology, 
experimental results reveal that it provides over 22% power reduction over conventional 
Dynamic Voltage and Frequency Scaling (DVFS) methodologies.
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Introduction

Unprecedented demand for energy-efficient and 
high-performance VLSI architectures [1] has been cre-
ated by the increasing ubiquity of Internet-of- Things 
(IoT) devices, wearable electronics, and edge comput-
ing systems. Often confined by limited power budgets 
and computing capabilities, these devices call for cre-
ative ideas to balance dependability, performance, 
and power usage [2]. Conventional techniques in VLSI 
design—such as heuristic-based optimizations, static 
analysis, and manual tuning—often struggle to address 
the dynamic and complex nature of modern workloads. 
Managing trade-offs across multiple factors, including 
voltage scaling, clock gating, and transistor-level optimi-
zations, is challenging. Existing methods frequently rely 
on fixed models or predefined configurations, which lack 

adaptability and limit opportunities for context-specific 
optimization. As system requirements evolve and work-
loads grow more diverse, there is a strong need for a 
new approach to VLSI design and optimization. A branch 
of artificial intelligence, DRL presents a viable answer 
to this problem [3]. DRL helps systems to learn from 
experience, adapt to changing situations, and simulta-
neously maximize for several goals by characterizing 
the VLSI design process as a sequential decision-making 
issue [4]. DRL dynamically explores the design space to 
find ideal configurations and approximates complicated 
relationships using neural networks unlike conventional 
approaches [5]. Its potential impact on VLSI design is 
demonstrated through applications in areas such as con-
trol systems, hardware design strategies, and resource 
optimization. This work presents a control framework 
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techniques for power optimization in VLSI systems. DVFS 
dynamically adjusts the operating voltage and frequency 
based on workload requirements [12], achieving a bal-
ance between power savings and performance using 
Reinforcement Learning (RL). Panda et al [13] discussed 
accurate load forecasting of processors using ML tech-
niques to achieve higher power efficiency.

RL has emerged as a promising alternative for dynamic 
and adaptive power management. RL algorithms, such 
as Q-learning and policy gradient methods, have been 
applied to various resource management tasks in com-
puting systems [14]. Wang et al. achieved notable power 
reductions by showing how Q-learning is applied for run-
time task scheduling in multi-core CPUs [15]. In a same 
vein, [16] Panda et al suggested an RL-based DVFS con-
troller with real-time adaptability for changing work-
load. For high-dimensional state and action spaces, 
however, conventional RL methods suffer with scalabil-
ity and are therefore less appropriate for sophisticated 
VLSI designs.

Combining deep neural networks with RL algorithms to 
approximate value functions and policies helps DRL to 
overcome these restrictions. The introduction of Deep 
Q Networks (DQNs) in [17] represented a major advance 
allowing RL to address big-scale challenges [18]. DRL 
has been implemented subsequently in many fields, 
including resource management in cloud comput-
ing [19], energy optimization in IoT devices [20], and 
workload scheduling in embedded systems [21]. These 
papers show the great efficiency with which DRL can 
solve challenging, dynamic optimization issues.

RL algorithm [22] has been introduced for improving 
PPA (Power, Performance and Area) of the chip with 
advanced process node (5-16 nm) with Synopsys IC 
Compiler II (ICC2). Optimizing it does not call for large 
spectrum of values. Chen et al. (2024) [23] demon-
strated a deep reinforcement learning–based power 
management framework for chiplet-based multicore 
systems, therefore proving significant energy- Delay 
Product (EDP) savings via intelligent DVFS control. While 
their work addresses dynamically manipulating several 
architectural knobs—including clock gating, power gat-
ing, task scheduling, and memory access—in addition to 
DVFS—their work concentrates on managing power at 
the chiplet level using DQN. This greater control range 
allows our method to achieve more complete power 
optimization and include thermal and process fluctua-
tion restrictions. Li et al. (2024) [24] looked into edge 
device energy-efficient computation wherein deep 
reinforcement learning regulates DVFS for multi-task 

aimed at improving real-time power management in 
VLSI systems. As workload conditions vary, the system 
dynamically adjusts key parameters such as voltage, 
frequency, clock gating, and memory access techniques 
to maintain efficiency and performance [6], Proximal 
Policy Optimization (PPO) lets the agent develop a prob-
ability-based policy that efficiently balances thermal 
limitations, performance, and power savings, so sur-
passing conventional heuristic-based control methods. 
To optimize total power consumption while meeting 
performance, thermal, and area constraints, the system 
dynamically adjusts key design parameters such as volt-
age-frequency scaling, clock gating, power gating, task 
scheduling, and memory access strategies. We show the 
effectiveness of the suggested method in obtaining sig-
nificant power saving more than 22% while preserving 
system performance within reasonable levels by means 
of extensive validation on standard VLSI benchmarks.

This paper is organized mostly as follows. Section 2 cov-
ers relevant work in power optimization for VLSI and 
the application of DRL in like fields. Section 3 addresses 
the suggested DRL-based approach for ultra-low-power 
VLSI designs. Section 4 offers the performance analy-
sis, results, and experimental setup. Section 5 ends the 
work with important conclusions and recommendations 
for future investigations.

Literature Survey

For last several years, the design of ultra-low-power 
VLSI architectures has been a hot topic of study with 
different approaches aiming at lowest power consump-
tion without sacrificing system performance. Modern 
processors have thoroughly investigated and used con-
ventional approaches such clock gating, power gating, 
and stationary voltage scaling to lower dynamic and 
leakage power. These techniques, however, frequently 
depend on predetermined rules or fixed design-time 
assumptions, which restricts their flexibility to real-time 
workload variances. This has piqued increasing curiosity 
in intelligent and dynamic optimization methods.

Recent developments in machine learning (ML) [7], 
[8] open fresh opportunities for power optimization. 
Supervised learning approaches have been explored 
to predict power-performance trade-offs based on his-
torical workload patterns [9]. The energy consumption 
of particular tasks is approximated using a regression 
model [10]. While effective in static scenarios, super-
vised learning requires large labelled datasets [11] and 
lacks the ability to adapt to unforeseen changes in work-
load conditions. DVFS is one of the most widely adopted 
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Research Gaps and Contributions

While prior works have explored heuristic, machine 
learning, and RL-based power optimization, several 
challenges remain unaddressed:

1. Most RL-based power optimization studies focus only on 
Dynamic Voltage and Frequency Scaling (DVFS), with-
out considering multi-faceted design parameters such 
as clock gating, power gating, and process variations.

2. Existing approaches often fail to incorporate real-
time workload variations, limiting adaptability to 
dynamic computing environments.

3. Stability issues in DQN-based power optimization 
suggest the need for a more robust DRL framework 
such as PPO, which ensures stable training through a 
clipped objective function.

In this work, we propose a unified PPO-based DRL 
framework that jointly optimizes voltage-frequency 
scaling, clock gating, power gating, task scheduling, and 
memory access strategies. By formulating the ultra-low-
power VLSI design problem as a Markov Decision Process 
(MDP), we enable real-time adaptive power management 
with enhanced energy efficiency, performance stabil-
ity, and thermal regulation. Our approach represents a 
significant step forward in AI-driven VLSI architecture, 
bridging the gap between traditional methods and mod-
ern self-learning power optimization techniques.

Methodology

This research employs the Proximal Policy Optimization 
(PPO) algorithm, a stable and efficient policy-gradient 
method, to optimize ultra-low-power VLSI architectures 

systems. Their efforts indicated little power savings by 
varying voltage and frequency settings in response to 
task demands. While their focus was on DVFS on edge 
computing systems, our method spans more broadly 
employing reinforcement learning—more specifically 
PPO—on a range of architectural controls including 
clock gating, power gating, memory optimization, and 
task scheduling. This guarantees more complete power 
control at the VLSI architectural level by addressing not 
only energy efficiency but also temperature, perfor-
mance, and area restrictions.

Notwithstanding these developments, the use of DRL 
to ultra-low-power VLSI designs is still mostly unproven. 
Although current research has concentrated on specific fac-
tors including DVFS or task scheduling, a complete frame-
work integrating several power management strategies 
using DRL is still to be established. Building on the basis 
of previous work, this work suggests a DRL-based method 
concurrently handles dynamic resource allocation, adaptive 
voltage-frequency scaling, and workload management. This 
work intends to exceed the limits of energy efficiency in 
VLSI systems by using the special features of DRL.

In summary, the literature reveals a clear evolution from 
static, heuristic-based methods to adaptive, ML-driven 
approaches for power optimization in VLSI architec-
tures. However, the integration of DRL as a holistic solu-
tion for ultra-low-power VLSI systems represents a novel 
contribution, which is the focus of this research.

Summary of Comparison

Based on the literature study, the summary has been 
outlined in Table-1

Table 1. Comparison Summary of Literature Study

Feature Related Works Present Research

RL Algorithm DQN-based PPO-based (policy-gradient method)

Knobs Controlled Primarily DVFS, Power Gating (PG) DVFS + Clock Gating (CG) + PG + Task Scheduling (TS) + 
Memory Optimization (MO)

State Considerations Power, throughput, temp Power, delay, temp, area, Process , Voltage, 
Temperature (PVT)

Adaptability Static workloads Dynamic adaptation across blocks

Hardware Modeling Router/converter/cores Full chip-level simulation

Power Optimization Limited to PG, gate sizing, or accelerators  System-wide (DVFS, CG, PG, TS, MO)

Reinforcement Learning Q-learning/heuristic tuning  PPO (advanced policy-gradient method)

State Space Simplified (few variables)  Rich: Voltage, Frequency, Temp, Area, Leakage, etc.

Workload-Awareness Static scenarios  Adaptive to workload diversity

Power Saving (%) 15–20% typical  ~22–25% demonstrated

Scalability Task-specific or RTL-only  Block or chip-level scalable
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In this state:

1. The agent might decide to turn on clock gating and 
cut the voltage by 0.05 V. 

2. Following the action, the surroundings changes sys-
tem metrics (e.g., lowered dynamic power, little 
delay increase, lower temperature). 

3. Based on these adjustments, the agent then gets 
a reward; it stores the tuple  in a replay buffer for 
training. The symbols and its representations  has 
been described in  Eq.(2) .

After the activity, the environment changes system met-
rics (e.g., lower dynamic power, less change in delay, 
lower temperature).

Agent training models based on DQN architecture change 
the state-action-value function. Through multi-layer 
neural network approximation of Q-values, the DQN 
enables the agent to predict long-term benefits of every 
action in a given environment. The agent explores the 
state space balancing study of new tactics with appli-
cation of learnt policies using an epsilon-greedy pol-
icy. Based on system reactions and observable rewards 
over many episodes, the DQN is trained with the agent 
iteratively modifying its decision-making strategy. Past 
events are preserved, and batch updates are performed 
using a replay memory approach, therefore stabilizing 
the training process.

At last, in the evaluation stage, the trained DRL agent 
is tested on its capacity to dynamically control perfor-
mance and power over a spectrum of workload scenar-
ios. One can verify the effectiveness of the method by 
measuring power consumption, latency, energy-delays, 
and cumulative rewards. Comparative studies against 
baseline approaches—such as heuristic-based DVFS—
showcase the advantages of DRL in establishing optimal 
power-performance trade-offs.

This methodology ensures a systematic approach to 
ultra-low-power VLSI optimization, offering dynamic 
adaptability to changing workloads and constraints, 
making it suitable for real-world deployment in ener-
gy-efficient hardware systems.

Problem Formulation

We formalize the ultra-low-power VLSI design optimiza-
tion as a DRL problem, where the PPO algorithm is used 
to train an agent for optimal design parameter selection. 
The agent learns an optimal policy π* that minimizes 

by modeling the problem as a Markov Decision Process 
(MDP). The defined state space includes nine key sys-
tem-level parameters: supply voltage, operating fre-
quency, capacitance, dynamic power, leakage power, 
die temperature, area overhead, workload characteris-
tics, and process variation. The action space lets one 
regulate design-level decisions including voltage and fre-
quency scaling, clock gating, power gating, job sched-
uling, and memory access optimization. The reward 
function is designed to direct the agent toward lowest 
possible power usage while preserving thermal limita-
tions and performance. It is expressed as described in 
Eq. (1) where each term reflects a critical trade-off in 
low-power design, and the weights α, β, γ, and δ are 
tuned empirically. Stable-Baselines3 and Gymnasium 
over 500 episodes allow the PPO agent to be trained in 
a simulated VLSI environment where it learns to make 
effective control decisions that lower power usage by 
roughly 20–25% relative to baseline DVFS approaches. 
This method shows how well reinforcement learning can 
dynamically optimize challenging VLSI devices.

Environment design, agent training, and evaluation define 
the three primary facets of the technique. Environmental 
design is followed in the construction of a simulation 
model depicting the VLSI system. Surroundings, as the 
state space, reflect system factors including voltage, 
frequency, workload, power consumption, and so forth. 
Among other things, the agent moves in the surrounding 
adjusting voltage and frequency levels. The actions influ-
ence the performance and power consumption of the sys-
tem; the surroundings provide the agent with feedback 
in form of rewards. The reward function penalizes the 
agent for overstepping limits such voltage thresholds or 
too severe performance degradation, intended to lower 
power consumption and assure sufficient performance. 
The reward function is designed to precisely satisfy the 
research objective: low total power consumption satisfy-
ing system constraints. It is defined as:

 R(St,At) = αPsaving − βD − γAoverhead − δTdeviation (1)

where
Psaving = Percentage power saved compared to base-
line, D = Performance degradation (execution delay 
increase), Aoverhead = Additional area overhead, Tdeviation = 
Temperature deviation from an optimal range, α,β,γ,δ = 
weighting factor varying between 0 to 1.

To illustrate the process, consider a sample state:

St = { Vt = 0.8 V, ft = 500 MHZ, C, Pdyn,t, Pleak,t),  
Tt = 70°C, At,Wt,Θt}
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performance. This includes techniques such as minimiz-
ing redundant memory accesses, selectively bypassing 
caches, controlling prefetching, and placing idle mem-
ory blocks into low-power states.

Task Scheduling (TS): affects delay/performance, possi-
bly increasing or reducing execution time → included as 
a constraint or penalty.

Subject to 

1. Performance Constraint 
 D ≤ Dmax (Ensuring that delay remains within allow-

able limit)
2. Thermal Constraint 
 T ≤ Tmax (to prevent overheating)
3. Area Constraint 
 Aoverhead ≤ Abudget

4. Voltage-Frequency Scaling Limits
 Vmin ≤ Vt ≤ Vmax, fmin ≤ ft ≤ fmax

PPO Optimization Equations

PPO Policy Optimization
PPO aims to maximize the expected cumulative dis-
counted reward:

 π
π γ

=

 =   ∑ 0
* argmax ( , )

H t
t tt

E R S A
 

(5)

Where 
π*: The optimal policy
argmax:  Policy π that gives the maximum value of the 
expected reward expression.
H: the total number of time steps (or episodes) over 
which the cumulative reward is calculated during 
training 
γt: The discount factor raised to time step t.. It gradu-
ally reduces the weight of future rewards, where 0 < γ < 
1.  A typical value is 0.99
R(St, At): Reward received when taking action At in state  St. 

It reflects how good that action was, based on the defined 
objectives (like power saving, delay penalties, etc.).

PPO Clipped Objective Function
To ensure stability and prevent large updates, PPO uses 
a clipped surrogate objective

 L(θ) = E[min(rt(θ)At,clip(rt(θ),1 − ϵ,1 + ϵ) At) ] (6)

where

( ) ( )
( )
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π
=  = Ratio of new to old policy probabilities

π

total power consumption while maintaining system per-
formance, thermal constraints, and design feasibility.

1. Markov Decision Process (MDP) 
 State Space (S):

 St = {Vt,ft,C,Pdyn,t,Pleak,t,Tt,At,Wt,Θt} (2)

 where
 Vt = Supply voltage at time t, ft = Operating fre-

quency at t, C = Capacitance per transistor, Pdyn,t = 
Dynamic power at t, Pleak,t) = Leakage power at t, 
Tt = Die temperature at t, At = Area overhead at t,  
Wt = Workload characteristic at t , Θt = Process vari-
ation parameter at t

 Action space (A):

 At = {ΔVt, Δft, CGt, PGt, TSt, MOt} (3)
 where
 ΔVt = Change in voltage, Δft = Change in frequency, 

CGt = Clock gating decision, PGt = Power gating deci-
sion, TSt = Task Scheduling, MOt = Memory access 
optimization

 Reward Function (R):
 The reward function is shown as stated in the Eq. (1)

2. Objective Function
 The agent learns to minimize total power consump-

tion while respecting performance, thermal, and 
area constraints.

min .
CG PG MOtotal dyn leak saved saved saved D TSP P P P P P D

π
λ= + − − − +

 
  (4)

 where
 Pdyn = C.V2.f, Pleak = V.Ileak(T,W,Θ)
 PsavedCG

- Power saved due to clock gating
 PsavedPG

 - power saved due to power gating
 PsavedMO

 - power saved via memory access optimization
 DTS - Delay introduced or mitigated via task scheduling
 λD- Weighting factor for performance penalty

Clock Gating (CG): reduces dynamic power by disabling 
idle clocks → reduces Pdyn 

Power Gating (PG): cuts off power supply to unused 
blocks → reduces Pleak 

Memory Optimization (MO): improves cache/memory 
efficiency → reduces both dynamic power and EDP. It 
refers to the dynamic control of memory operations to 
reduce power consumption while maintaining system 
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 Where Psaving is power saved compared to base-
line, and other terms penalize performance 
loss, area, overhead, and excessive heat.

4. Store experience (St,At,Rt,St+1) in replay buffer D
8. end for

C. PPO Policy Update [at the End of Each Episode 
Based on the Last K Transitions]
9. Sample a mini-batch of (Si, Ai, Ri, Si+1) from  

buffer D
10. Compute advantage function Ai

 Ai = Q(Si,Ai) − Vb(Si)

11. Compute sampling ratio :

 
( ) ( )

( )
|

 
|

old

i i
i

i i

A S
r

A S
θ

θ

π
θ

π
=

 

(9)

12. Compute PPO loss function:

 L(θ) = E[min(ri(θ)Ai, clip(ri(θ),1 − ϵ,1 + ϵ)Ai)] (10)

13. Update policy network πθ using gradient ascent:

 θnew ← θold + η∇θL(θ) (11)

14. Update the value function Vϕ using temporal dif-
ference loss:

 LV(∅)=E[(V∅(Si) − (Ri + γV∅(Si+1)))
2] (12)

15. Update ∅ via gradient descent

 θnew ← θold + η∇θLv(∅) (13)

D. Episode Termination and Exploration Decay
16. End episode if maximum steps T reached or sys-

tem reaches steady-state.
17. Gradually reduce the exploration rate (ε)

E.  Repeat Until Convergence
18. Repeat until policy πθ  converges to an opti-

mal solution, minimizing power while satisfying 
constraints.

Network Architecture

The PPO agent is implemented using an actor-critic 
architecture, where both the actor (policy network) and 
critic (value function network) share a similar multi-
layer feedforward design. The input to the network 
corresponds to the system’s state vector, comprising 
parameters such as voltage, frequency, dynamic and 

At = Advantage function (reward relative to baseline)
ϵ = Clipping parameter

Advantage Function (At)
 At = Q(st, at) − Vb(st) (7)
where
Q(st,at) = Expected cumulative reward for state action 
pair, Vb(st) = Baseline value function estimate

Policy Update Rule
The network is updated using stochastic gradient ascent 

 θnew←θold + η∇θL(θ) (8)

η = learning rate
θnew = The updated parameter value
θold = The previous parameter value
∇θL(θ) = The gradient of the loss function L(θ) with 
respect to the parameters θ. It shows the direction and 
magnitude of the steepest ascent of the loss function.

Proposed Algorithm

A. Initialize Environment and Hyperparameters
1. Initialize replay buffer D to a fixed size.
2. Initialize policy network parameters θ randomly.
3. Initialize value network parameters ϕ randomly.
4. Set discount factor γ, clipping parameter ϵ, 

exploration rate ϵexplore , and other hyperparame-
ters (learning rate, batch size etc.).

5. Set number of episodes N and maximum steps 
per episode H.

B. Training Loop (for Each Episode e)
6. Initialize state S0 = {V0, f0,C,Pdyn,0),Pleak,0,T0, A0, W0,Θ0}
7. for each episode t = 1, …, K, do:

1. Select an action At based on policy πθ (At|St):
1. At = {ΔVt, Δft, CGt, PGt, TSt, MOt}
2. If ϵexplore is active, select random action 

with probability ϵexplore

2. Apply action At to update design parameters 
and obtain new state St+1:
1. Compute new power 
 Pdyn,t+1 = C.V2

t+1.ft+1, Pleak,t+1 = Vt+1.Ileak(Tt+1,Wt+1, 
Θt+1), PCG(t+1), PPG(t+1),PMO(t+1), λD.DTS(t+1)

 Ptotal,t+1 = Pdyn,t+1 + Pleak,t+1 − PCG(t+1) − PPG(t+1) − 
PMO(t+1) + λD.DTS(t+1)

2. Compute new temperature Tt+1 based on 
thermal dissipation model

3. Compute new delay Dt+1 based on voltage 
and frequency scaling

3. Compute reward (Rt):

 Rt = αPsaving − βD − γAoverhead − δTdeviation



Panda P et al.  
Learning-Based Ultra-Low-Power Optimization for VLSI Architectures

137Journal of VLSI circuits and systems, ISSN 2582-1458

parameters. These values are updated at each step 
based on control inputs.

Thermal Modeling: A simplified thermal model estimates 
temperature (T) based on power dissipation and thermal 
resistance. This captures heat buildup from workload 
activity and its effect on performance and leakage.

Dynamic Voltage-Frequency Scaling (DVFS): The sys-
tem adjusts voltage and frequency levels based on 
predefined control inputs. These adjustments impact 
both performance, through delay modeling, and power 
consumption.

Workload Simulation: Synthetic or trace-based workloads 
are used to drive core and memory activity, simulating 
system behavior under realistic computational conditions.

Process Variation & Aging Effects: Randomized perturba-
tions are added to parameters such as threshold voltage 
and leakage current to simulate variations caused by 
manufacturing imperfections and wear-out effects.

The experiment evaluates a power optimization method 
for VLSI architectural design by simulating a control 
system that manages memory access, task scheduling, 
power gating, and voltage and frequency adjustments. 
The simulation environment includes parameters such as 
supply voltage, operating frequency, dynamic and leak-
age power, die temperature, area overhead, workload 
patterns, and process variations. Control actions include 
voltage and frequency scaling, clock gating, power gat-
ing, task allocation, and memory access strategies. Over 
the course of 500 simulation runs, the system identi-
fies effective techniques to reduce power consumption 
while meeting performance requirements. Results indi-
cate that, under varying workloads, the method achieves 
approximately 20–25% power reduction. The improve-
ment trend over time reflects the system’s increas-
ing efficiency in making power-conscious decisions. 
Comparative analysis with traditional power manage-
ment techniques shows that this approach provides nota-
ble energy savings while adapting to workload changes. 
The optimization framework is applicable at both block-
level and chip-level in VLSI design, depending on how the 
system and constraints are modeled. At the block level, 
it supports fine-grained control of individual components 
such as ALUs, memory units, or cache blocks, enabling 
targeted optimizations like localized voltage scaling, 
clock gating, or memory control. This level of abstraction 
is especially useful in early- stage design evaluations due 
to its lower complexity and faster simulation cycles.

leakage power, temperature, area overhead, workload 
characteristics, and process variation. The network con-
sists of two fully connected hidden layers, each with 
128 neurons and ReLU activation functions. The actor 
network outputs a probability distribution over discrete 
actions—including voltage/frequency scaling, clock gat-
ing, power gating, task scheduling, and memory access 
optimization—using a softmax layer. The critic network 
outputs a single scalar value representing the expected 
cumulative reward (state value). This architecture bal-
ances computational efficiency and representation 
capacity, making it suitable for training in a high-dimen-
sional, multi-objective optimization environment.

Results and Analysis

The experiment has been performed in a simulated VLSI 
design environment using Python-based frameworks. 
The Reinforcement Learning-based PPO algorithm has 
been implemented using Stable-Baselines3 in Python 
with PyTorch as the deep learning backend. The data 
for the training phase is generated synthetically through 
a simulated VLSI design environment. Incorporating 
dynamic power, leakage power, voltage-frequency scal-
ing, and workload characteristics, the simulation envi-
ronment simulates VLSI architectural behavior. The state 
and action spaces have been defined using Gymnasium, 
originally OpenAI Gym, therefore enabling agent inter-
action with the surroundings. The agent sees a state 
made of these parameters at every time step, chooses 
an action (e.g., frequency or voltage), and gets a cor-
responding reward depending on power economy and 
constraint satisfaction. Stored and utilized for training 
the agent using the Proximal Policy Optimization (PPO) 
method, this interaction loop generates sequences of 
state-action-reward-next state tuples. This method 
ensures safe, scalable, and repeatable experimentation 
by enabling comprehensive evaluation without relying 
on physical chip measurements. 

Component Modeling: From core to memory to inter-
connect, every functional unit—models as an object 
with associated behaviors and attributes. A processing 
core is characterized by variables such as voltage (V), 
frequency (f), dynamic power ((Pdyn), leakage power 
(Pleak),), and temperature (T), all of which change over 
time based on control inputs and workload conditions.

Power Modeling: Dynamic power is computed using the 
equation Pdyn = C.V2.f where capacitance (C) is a design 
constant. Leakage power is modeled as a function of 
voltage, temperature, workload, and process variation 
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This research is not tied to a specific commercial proces-
sor but is designed to be processor-agnostic by operating 
within a simulated VLSI design environment. The simu-
lation abstracts key components of a generic process-
ing system, such as cores, memory, and interconnects, 
and models dynamic behaviors like voltage-frequency 
scaling, leakage power, and thermal effects. However, 
for practical relevance and alignment with current low-
power design trends, the environment parameters and 
design constraints are inspired by modern embedded 
processors and SoCs (System-on-Chips) commonly used 
in edge devices, IoT platforms, and wearables — such 
as processors based on ARM Cortex-M or RISC-V microar-
chitectures in technology nodes ranging from 28 nm to 
7 nm.

For the proposed ultra-low-power VLSI optimization 
framework using Deep Reinforcement Learning (DRL), 
the recommended technology node for data collec-
tion and simulation is 22 nm FD-SOI. These nodes are 
widely adopted in low-power applications such as edge 
computing, IoT devices, and wearable electronics due 
to their favorable trade-offs between performance, 
power efficiency, and design complexity. Both nodes 
provide a realistic and well-characterized design space 
that allows effective modeling of dynamic and leakage 
power, temperature-dependent behaviors, and process 
variations—critical factors in the reinforcement learning 
environment. Furthermore, accessible for these nodes 
are large public datasets and open-source predictive 
technology models (e.g., PTM and BSim-CMG), which 
fit academic research without depending on access to 
private PDKs. 22 nm node provides a reasonable level 
of complexity for simulation while keeping represent-
ing modern low-power design restrictions, compared to 
advanced nodes like 7 nm or 5 nm which demand signifi-
cant computational and modeling overhead due of quan-
tum effects and IR drop problems. These technological 
nodes enable both design exploration and practical rel-
evance by helping identify an optimal combination for 
verifying the proposed method.

Hardware Correlation and Framework
To ensure physical realizability and practical relevance, 
the control signals are explicitly mapped to established 
architectural and RTL-level power management mech-
anisms in VLSI systems. Each control parameter corre-
sponds to a design feature that can be implemented either 
in the architectural specification or RTL logic. For exam-
ple, adjustments in voltage (ΔVt) and frequency (Δft) are 
managed through dynamic voltage and frequency scaling 
(DVFS) modules, typically implemented using on-chip volt-
age regulators and programmable Phase-Locked Loops 

Hyperparameter Tuning: Stable and efficient training 
of the Proximal Policy Optimization (PPO) agent in the 
VLSI optimization system was guaranteed by hyperpa-
rameter adjustment. Using a manual grid search, key 
hyperparameters including learning rate, discount fac-
tor (λ), clipping parameter (ε), batch size, number of 
epochs, and exploration rate were methodically set. 
Different combinations of these values were inves-
tigated, and their effects were assessed using stabil-
ity of learning, agent total reward, and power savings 
attained. With a learning rate of 2.5e-4, a discount 
factor of 0.99 to balance short-term and long-term 
rewards, and a clipping value of 0.2 to stop signifi-
cant policy changes, the best-performing setup was 
Performance and computational efficiency were found 
to be satisfactorily balanced by a batch size of 128 and 
5–10 PPO update epochs each episode. Training gradu-
ally reduced the exploration rate to enable the agent 
to first explore the design space then subsequently 
utilize learnt techniques. Achieving convergence and 
strong performance under several workload conditions 
in the simulated VLSI environment depends on this tun-
ing procedure.

Power Saving: Power saving is calculated by comparing 
the total power consumption of the VLSI system before 
and after applying the Deep Reinforcement Learning 
(DRL)-based optimization strategy. Specifically, during 
each episode, the total power consumed using the pro-
posed PPO-trained agent (denoted as  is recorded and 
compared against a baseline method such as traditional 
Dynamic Voltage and Frequency Scaling (DVFS) or static 
configuration (denoted as Pbaseline).

 ( )  % 100baseline DRL

baseline

P P
PowerSaving

P
−

= ×  (14)

Here:

• Pbaseline is the average power consumption under con-
ventional techniques across the same workload and 
conditions.

• PDRL is the power consumption after applying DRL-
based control decisions (voltage/frequency adjust-
ments, clock gating, etc.).

This is performed across multiple test workloads and 
time steps, and the average percentage reduction 
indicates the effectiveness of the optimization. In the 
experiment, power savings of approximately 20–25% 
were consistently observed, demonstrating the agent’s 
capability to minimize energy usage while respecting 
performance constraints.
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and energy per operation (EPO). Experimental results 
show that the PPO-trained agent consistently outper-
forms the heuristic baseline across multiple workload 
scenarios. While retaining performance within 5% of 
the baseline delay and keeping area overhead below 3% 
due to minimum reconfiguration logic, the DRL tech-
nique generally delivered a 20–25% reduction in total 
power usage. Furthermore, the energy per operation 
dropped by 22%, suggesting over time better energy 
economy. Unlike fixed heuristics without environmental 
knowledge, these gains result from the agent’s ability 
to adaptively and contextually apply fine-grained control 
actions. This comparison shows how well DRL balances 
performance and power in challenging VLSI design envi-
ronments over conventional rule-based methods.

Scalability and Generalizability
We examined the performance of the proposed DRL-
based optimization framework over a range of sample 
VLSI design blocks and workloads in order to show its 
universal applicability and robustness. Each of these 
computationally intense units— multiply-accumulate 
(MAC), arithmetic logic units (ALUs), FIR filters, and sca-
lar processing cores—show different power-performance 
characteristics and dynamic behavior. Synthetic work-
loads for every block were meant to replicate actual 
operational patterns, ranging in low-throughput control 
tasks to high-throughput signal processing. Each block 
was modeled with its own power, delay, and tempera-
ture profile in a unified environment under training for 
the DRL agent. Results reveal that the agent effectively 
modified its policy to fit any workload environment, pre-
serving a constant 20–25% power savings and ensuring 
performance within reasonable limits over all blocks. 
These results confirm the adaptability of the framework 
and its capacity to be generalized over heterogeneous 
functional units, so fitting for use in several low-power 
SoC applications. Additional help comes from power-sav-
ing comparisons included in the additional study and 
workload-specific performance graphs.

1. Reward vs. Episodes
The cumulative reward function converges over multi-
ple episodes, indicating that the reinforcement learning 
agent successfully learns optimal policies for power and 
performance trade-offs. The Reward vs. Episodes graph 
as shown in Fig. 1 illustrates the cumulative reward pro-
gression over 500 training episodes. Initially, the reward 
fluctuates significantly and even decreases, indicating 
the agent’s exploration phase where it learns the optimal 
policy. Around the mid-training phase (~250 episodes), 
the reward begins to stabilize and shows an upward 
trend, signifying improved policy learning. Towards the 

(PLLs). Clock gating (CGt) is achieved through RTL-level 
logic that disables specific registers or pipeline stages 
during idle periods. Power gating (PGt) involves controlling 
power switches at the block level using power islands. Task 
scheduling (TSt) determines how workloads are distributed 
across multiple cores or functional units and is handled 
through architectural-level control logic or firmware-based 
balancers. Lastly, memory optimization (MOt) aligns with 
memory controller parameters such as prefetching, cache 
bypassing, or low-power memory modes. This explicit 
mapping demonstrates how the DRL agent’s decisions can 
be translated into real-time reconfiguration of hardware, 
bridging the gap between high-level learning algorithms 
and practical VLSI implementation.

Simulation Environment and Setup
The proposed framework is implemented using a system- 
level simulation environment developed in Python to 
model the behavior of power-aware VLSI architectures. 
The environment captures key architectural parameters 
such as supply voltage, operating frequency, workload 
intensity, dynamic and leakage power, area overhead, 
and die temperature. Reinforcement learning inter-
action is facilitated through the Gymnasium (formerly 
OpenAI Gym) interface, while the PPO agent is trained 
using the PyTorch framework in conjunction with Stable-
Baselines3. Power estimation is based on standard CMOS 
models, leakage power is modeled as Pleak = V.Ileak (T,W,Θ), 
as a function of temperature, workload, and process vari-
ation. The simulation assumes a 22 nm FD-SOI process 
node, representative of modern low-power design tech-
nologies with significant sensitivity to leakage and ther-
mal variation. Also, the framework is readily extensible 
to lower technology nodes (e.g., 7 nm, 5 nm) by updat-
ing the power, leakage, and process variation models 
accordingly. This flexibility ensures the adaptability of 
the proposed DRL framework to future VLSI technologies. 
Although this study focuses on algorithm development 
and validation using high-level models, the framework is 
structured to support future integration with RTL simula-
tion or co-simulation environments such as Verilator or 
gem5+McPAT for cycle-accurate or power-accurate val-
idation. This abstraction enables rapid experimentation 
while maintaining physical design relevance.

Quantitative Evaluation and Benchmarking
To demonstrate the effectiveness of the proposed DRL-
based optimization framework, we performed a com-
parative analysis against traditional heuristic methods, 
specifically a rule-based DVFS scheme and static clock/
power gating strategies commonly used in embedded 
system designs. The evaluation metrics include total 
power consumption, execution delay, area overhead, 
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implies that the reinforcement learning agent keeps 
voltage variations low to improve energy economy and 
actively tunes frequency to maximize performance. 
Complementing ultra-low-power VLSI architecture, the 
controlled voltage scaling speaks to an endeavor to bal-
ance power consumption with system stability.

4. Energy-Delay Product (EDP) vs. Episodes
Using the Energy-Delay Product (EDP) against Episodes 
graph, Fig. 4 shows the trade-off between energy effi-
ciency and performance delay across 500 episodes. 
Since VLSI architecture balance computational delay 
with power consumption, its optimization relies mostly 
on the EDP measure. Graph fluctuations reveal that 
response to varying workloads and system constraints 
constantly changing performance and power parameters 
in the PPO-based reinforcement learning agent. Absence 
of a distinct increasing or dropping trend suggests that 
the agent is effectively regulating energy-delay trade-
offs, thereby limiting too high energy consumption while 
maintaining performance. This work focuses on the 
effectiveness of RL-based power optimization in obtain-
ing a balanced and efficient hardware design.

5. Power Saving vs. Episodes
Fig. 5 presents the graph of power saving illustrating the 
variance in power efficiency obtained by the RL-based 
PPO agent throughout 500 episodes. Reflecting the 
instantaneous power savings %, the blue line displays 
changes resulting from dynamic workload variations and 
the agent’s adaptive power management strategies at 
every episode. Presenting the average power saving of 
22.48% the red dashed line reveals. The noted variations 

later episodes, the cumulative reward increases signifi-
cantly, demonstrating that the PPO agent successfully 
optimizes power savings while balancing performance, 
thermal, and area constraints. The upward trajectory 
validates the effectiveness of reinforcement learning in 
optimizing VLSI design parameters.

2. Power Consumption vs. Episodes
Power consumption variations across episodes high-
light the system’s adaptive nature in optimizing energy 
usage. The DRL model effectively minimizes power 
consumption compared to a baseline by adjusting volt-
age levels, frequency, and gating strategies etc. The 
Power Consumption vs. Episodes graph of Fig. 2 shows 
the variation in power consumption (in watts) over 500 
training episodes. The fluctuations indicate that the 
reinforcement learning agent is dynamically adjusting 
design parameters such as voltage, frequency, clock 
gating, and power gating to optimize power efficiency. 
While there is significant variability, the trend suggests 
that the agent is exploring different power management 
strategies to balance energy savings with performance 
constraints. The scattered yet controlled oscillations 
indicate an adaptive approach to maintaining power effi-
ciency without exceeding operational limits.

3. Voltage and Frequency Scaling
The dynamic variations in supply voltage (green) and 
operating frequency (blue) indicated in the Voltage and 
Frequency Scaling graph in Fig. 3 over 500 episodes. 
Within a smaller range—between 0.8 V and 1.2 V—the 
voltage is quite consistent; the frequency exhibits clear 
oscillations between roughly 1.0 GHz and 3.0 GHz. This 

Fig. 1: Rewards vs. Episode
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Fig. 2: Power Consumption vs. Episodes

Fig. 3: Voltage and Frequency Scaling vs. Episodes

suggest that the agent uses power depending on work-
load conditions reasonably successfully and keeps system 
restrictions. This exposes how well the reinforcement 
learning approach increases power efficiency for VLSI 
designs, therefore providing a possible option for ener-
gy-aware design approaches.

Software & Hardware Requirement

This work evaluates power optimization techniques with-
out the need for physical silicon prototypes by means 
of simulated VLSI environments. Custom-made VLSI sys-
tem model written in Python is used in the simulation 

environment with Python including voltage, frequency, 
switching activity, leakage currents, thermal behavior, 
and area overhead. Standard power and performance 
models—including dynamic power equations (as detailed 
in Section 3.1 -> Objective Function) and leakage models 
dependent on temperature and process—inform the envi-
ronment simulation. To reflect reasonable VLSI operation 
scenarios, the simulation permits controlled adjustment 
of workload characteristics, process variations (Θt) and 
heat profiles. For data processing and visualization, the 
software stack calls for Python 3.10, NumPy, Matplotlib, 
and Pandas. TensorFlow and PyTorch frameworks are 
applied in Deep Reinforcement Learning (DRL) techniques. 
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Fig. 4: EDP vs. Episodes

Fig. 5: Average Power Saving vs. Episode

The simulated environment provides APIs through which 
the DRL agent interacts with system states and performs 
actions such as voltage scaling, frequency adjustment, 
clock gating, and task scheduling. The hardware setup 
consists of a High-Performance Computing (HPC) worksta-
tion equipped with an Intel Xeon or AMD EPYC processor 
(32 cores), 64 GB RAM, and an NVIDIA RTX 3090 GPU. The 
operating system is Ubuntu 22.04 LTS with CUDA 12.2 and 
cuDNN libraries enabled for GPU acceleration.

Power Measurement and Evaluation Methodology
Since the experiments are based on a simulated envi-
ronment, the power consumption is calculated internally 

using the analytical power models embedded within 
the simulation engine. Specifically, dynamic power and 
leakage power are computed per state transition based 
on activity factors, operating voltage, temperature, and 
switching capacitance. The external mention of a “power 
measurement unit” refers to future physical validation; 
however, in this study, no physical measurement unit is 
used. Instead, all power data is extracted from simulation 
logs generated after each interaction episodes. The cumu-
lative energy and Energy-Delay Product (EDP) are also 
computed using the logged power and performance data 
over time to assess the agent’s optimization effective-
ness. Thus, the measurement is purely simulation-based 
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can be enhanced through actual implementation and 
validation on FPGA or ASIC platforms.

Acronyms

PDKs - Process Design Kit
SAC - Soft Actor-Critic
DVFS - Dynamic Voltage and Frequency Scaling 
EDP - Energy-Delay Product 
DRL - Deep Reinforcement Learning 
PPO - Proximal Policy Optimization 
HPC - High-Performance Computing 
BSIM-CMG - Berkeley Short-channel 
IGFET Model - Common Multi-Gate
MDP - Markov Decision Process 
IoT - Internet-of-Things
HLS- High-Level Synthesis
ASIC-Application Specific Integrated Circuit
FPGA- Field Programmable Gate Array
EDA- Electronic Design Automation
HPC- High Performance Computing
PLL – Phase Locked Loop
RTL- Register Transfer Logic
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