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Abstract

Neuromorphic computing represents a transformative direction in artificial intelligence 
(AI), offering energy-efficient, massively parallel processing inspired by the structure and 
function of biological neural systems. Memristor-based crossbar arrays serve as a founda-
tional element in neuromorphic computing, offering the capability to perform in-memory 
operations essential for neural tasks such as matrix-vector multiplication. This work pres-
ents a structured approach to the design and synthesis of scalable crossbar architecture 
specifically intended for neuromorphic hardware. Emphasis is placed on achieving compact 
layout density while minimizing parasitic effects that typically hinder performance in dense 
integration. The architecture is rigorously evaluated through System Verilog simulations to 
verify functional accuracy and fault tolerance. Subsequent synthesis using Cadence Genus 
demonstrates measurable gains in power efficiency, area utilization, and timing perfor-
mance. These outcomes underscore the architecture’s suitability for advanced neuromor-
phic processors, where reliability and computational efficiency are paramount. Through 
a cohesive integration of physical design strategies, simulation validation, and synthesis 
optimization, the proposed framework contributes meaningfully to the development of 
high-performance hardware for AI and machine learning applications.
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Introduction 

The exponential growth of artificial intelligence (AI) 
and machine learning (ML) technologies has intensified 
the need for computational platforms that can deliver 
high throughput, low latency, and energy-efficient per-
formance. Traditional computing systems based on the 
von Neumann architecture are increasingly inadequate 
for such demands because of inherent limitations in 
data transfer between memory and processing units. 
This block, often referred to as the von Neumann bot-
tleneck, restricts scalability and leads to excessive 
power consumption in data-intensive applications. 
Neuromorphic computing represents a paradigm shift in 
hardware design, drawing inspiration from the structural 
and functional dynamics of biological neural systems.  

In contrast to traditional von Neumann architecture, 
neuromorphic platforms allocate memory and computa-
tion, thereby enabling low-latency data processing and 
significant reductions in energy consumption. Among 
the diverse hardware strategies explored for implement-
ing neuromorphic principles, memristor-based crossbar 
arrays have gained prominence because of their intrin-
sic support for in-memory computation. These architec-
tures efficiently perform matrix-vector multiplication 
(MVM), a core operation in neural inference while main-
taining a compact footprint and exhibiting favorable 
power characteristics.

The exponential progress in AI and ML demands com-
putational architecture capable of handling massive 

WWW.VLSIJOURNAL.COM�
https://orcid.org/0009-0001-4289-6576
https://orcid.org/0009-0002-4307-095X


Bhagya and Sharan Basaveshweshwar G. Hiremath 
Physical Design of Scalable Memristor Crossbars for Neuromorphic Computing

187Journal of VLSI circuits and systems, ISSN 2582-1458

Realizing peak performance in memristor-based neuro-
morphic systems necessitates synergistic advancements 
across both hardware and software layers, with partic-
ular attention to streamlined data exchange, energy-
efficient operation, and scalable design frameworks 
conducive to large-scale deployment.[10] In this context, 
the ongoing evolution and optimization of crossbar 
architectures are poised to serve as a cornerstone in 
enhancing the computational efficacy and adaptability 
of AI and neuromorphic technologies.

Literature Survey 

The increasing demand for energy-efficient and high-
performance computing has driven extensive research 
into neuromorphic computing systems. Conventional 
von Neumann architecture is increasingly constrained 
by inherent memory bandwidth limitations and ele-
vated power demands, rendering them suboptimal for 
the computational intensity of large-scale AI and deep 
learning workloads.[11] In response to these limitations, 
memristor-integrated crossbar systems have emerged as 
a promising paradigm, leveraging in-memory computa-
tion to facilitate massively parallel data processing while 
significantly reducing energy overhead.[12] Extensive 
research has highlighted the viability of memristive 
devices as core components in neuromorphic systems, 
particularly for emulating synaptic functionalities such 
as weight retention and dynamic adaptation within neu-
ral architectures.[13,14] In parallel, crossbar-based config-
urations have been actively examined for their efficacy 
in accelerating MVM—an essential computational kernel 
underpinning numerous AI applications.[15]

While demonstrating significant potential, memristive 
crossbar arrays face fundamental challenges arising from 
three key factors: intrinsic device-to-device variation, 
on-ideal switching characteristics, and finite cycling 
endurance.[16] Recent research has consequently devel-
oped three complementary solution strategies: (i) robust 
circuit designs incorporating redundancy, (ii) algorithmic 
error compensation methods, and (iii) architectural inno-
vations that collectively enhance both system reliability 
and computational efficiency. Earlier research efforts 
have primarily focused on key development areas: opti-
mization of memristive switching kinetics, development 
of novel interconnect architectures, and implementa-
tion of adaptive learning algorithms to enable robust 
cognitive computing platforms. 

Contemporary advances in computational modeling tools 
and design automation techniques have significantly 

datasets are processed with ultra-low latency while 
maintaining optimal energy efficiency. Traditional von 
Neumann–based systems, constrained by the physical 
segregation of memory and processing units, suffer from 
fundamental inefficiencies, notably the von Neumann 
bottleneck, which exacerbates latency and energy over-
heads during data-intensive operations.[1] In contrast, 
neuromorphic computing, a paradigm modeled after the 
biological brain’s synaptic plasticity and parallel process-
ing, offers a transformative solution to these limitations, 
enabling energy-efficient, event-driven computation.[2] 

Central to many neuromorphic implementations is the 
memristor, a nonvolatile resistive switching device, 
which enables simultaneous data storage and compu-
tation.[3] This distinctive feature has spurred significant 
interest in memristor-driven architecture, especially 
crossbar arrays, because of their ability to emulate syn-
aptic connectivity with remarkable space efficiency and 
computational density in neuromorphic designs.[4]

The development of optimized crossbar architecture 
for memristor-integrated neuromorphic systems offers a 
viable solution to overcome the inherent constraints of 
conventional computing frameworks. In a typical imple-
mentation, memristive devices are precisely arranged 
at the intersecting nodes of perpendicularly aligned 
input and output electrodes, creating a dense, geomet-
rically uniform network structure.[5] This configuration 
enables massive parallel processing, with each memris-
tor simultaneously functioning as a nonvolatile memory 
unit and a processing element. A key strength of this 
approach is its native support for single-cycle MVM, sig-
nificantly accelerating fundamental operations critical 
to modern ML applications, including deep neural net-
works, real-time pattern analysis, and complex signal  
interpretation.[6,7]

Despite their promising capabilities, memristive neuro-
morphic systems face significant implementation chal-
lenges that hinder widespread adoption. Three primary 
limitations currently restrict their deployment: (i) inher-
ent stochasticity in memristive switching behavior, 
(ii) progressive device performance deterioration during 
sustained operation, and (iii) the critical need for robust 
architectural designs capable of compensating for inher-
ent device imperfections.[8] Addressing these challenges 
requires a comprehensive methodology that integrates 
three critical components: (i) nanoscale architectural 
optimization, (ii) careful material selection based on 
switching reliability metrics, and (iii) implementation of 
hierarchical error-correction mechanisms.[9]
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contributed to improving both the manufacturability and 
operational efficacy of memristive crossbar implemen-
tations for neuromorphic engineering applications.[17]  
This comprehensive review systematically analyzes 
contemporary research developments in neuromorphic 
hardware design, critically evaluating breakthrough 
achievements in crossbar architecture optimization, 
unresolved technical obstacles, and emerging opportuni-
ties for advancing energy-efficient computing paradigms 
through novel memristive crossbar implementations.

Recent studies on memristive neuromorphic architecture 
reveal persistent challenges related to device reliability, 

energy efficiency, and scalability.[30–32] Thermal effects 
and stochastic switching in 3D memristive arrays lead 
to performance degradation and complicate the design 
of robust, fault-tolerant systems, especially under high-
frequency operation or large-scale integration. Hybrid 
CMOS-memristor approaches and redundancy mech-
anisms can enhance fault mitigation, but often at the 
cost of increased area and reduced energy efficiency, 
which are critical limitations for edge computing. Device 
endurance, retention, and variability remain prominent 
issues, affecting both the long-term stability and real-
time applicability of neuromorphic hardware. While 
advances in in-memory computing and fault-tolerant 

Table 1: Key findings from recent research on memristor technology and neuromorphic computing.

Author Year Technique Key findings

Jiang et al.[29] 2025 Hardware-software co-design with 
FAST simulator

Developed a fast, sparse-matrix-based simulator to 
model nonidealities (IR-drop, variation, and SAF) in 
memristor crossbars. Proposed a comparator-based 
activation function to recover >54% accuracy under 
IR-drop conditions.

Li & Ang[30] 2025 Large-scale memristor crossbar 
hardware implementation

Reviewed stringent device and array-level 
requirements for neuromorphic systems. Emphasized 
optimization across device, circuit, and algorithm 
levels.

Zhang et al.[31] 2025 Memristor crossbar architecture for 
neuromorphic systems

Highlighted memristor crossbars as energy-efficient 
alternatives to CMOS for DNNs and SNNs. Discussed 
challenges like sneak paths and variability.

Wang, Z. et al.[18] 2024 Thermal-aware neuromorphic 
architecture 

Heat dissipation in 3D memristive arrays degrades 
performance and exacerbates device variability. 

Sun, L. et al.[19] 2024 Hybrid CMOS-memristor fault 
mitigation strategies 

Overhead of redundancy circuits (>20% area) reduces 
energy efficiency in edge devices. 

Ni, K. et al.[20] 2024 Ferroelectric memristors for robust 
neuromorphic systems 

Retention failure under high-frequency operation 
limits real-time deployment. 

Lanza, M. et al.[21] 2023 Emerging memristive devices for 
brain-inspired systems 

Stochastic switching behavior complicates 
deterministic fault-tolerant design. 

Li, J. et al.[22] 2023 Memristor-based reinforcement 
learning accelerators 

Stochastic switching causes reward estimation errors 
in RL training pipelines

Mehonic, A. et al.[23] 2023 Memristive in-memory computing for 
neuromorphic systems 

Limited device endurance (<10^6 cycles) and 
nonlinear conductance updates hinder long-term 
reliability. 

Chen, Y. et al.[24] 2023 Fault-tolerant SNNs using memristive 
crossbars 

High sensitivity to memristor stuck-at-faults; lacks 
adaptive error correction during inference. 

Indiveri, G. et al.[25] 2022 Fault-tolerant neuromorphic 
architecture 

Overhead of redundancy/error correction reduces 
energy efficiency and area density. 

Chen, Y. et al.[26] 2021 Memristive neuromorphic hardware 
for edge AI 

Limited endurance (write cycles) and thermal 
management challenges in dense arrays.

Ielmini, D. et al.[27] 2020 Memristor-based synapses/crossbars Device variability (cycle-to-cycle, device-to-device) 
degrades reliability in large-scale systems.

Strukov, D. et al.[28] 2019 Hybrid CMOS-memristor systems Integration complexity with CMOS; mismatch in 
switching thresholds causes inference errors. 

Waser, R. et al.[29] 2018 Nonvolatile memory for neuromorphic 
computing 

Drift in memristive conductance states over time 
(temporal instability). 
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design offer promise, the field continues to grapple with 
integrating these new technologies into reliable, effi-
cient, and scalable brain-inspired systems.

Methodology of the Research Work

The development of efficient, memristor-based cross-
bar architecture for neuromorphic computing involves a 
multiphase approach, integrating physical design, sim-
ulation, synthesis, and validation techniques to ensure 
scalability, robustness, and energy efficiency. The meth-
odology encompasses the following steps:

Architectural Design and Modeling

The process begins with designing a hierarchical mem-
ristor crossbar array tailored for MVM, a core operation 
in neuromorphic systems. The architecture incorporates 
dedicated control units, memory modules, and intercon-
nects to facilitate high-density integration. Key param-
eters such as array dimensions, memristor conductance 
range, and precision levels are defined based on appli-
cation requirements. Diagrammatic representations of 
the architecture and functional modules, including the 
control unit (MVM CU), datapath (MVM DP), and memory 
interfaces, are developed to visualize data flow and con-
trol signals.

The architecture comprises two configurations of a 
memristor-based crossbar array commonly used in neu-
romorphic computing. In Figure 1A, a traditional cross-
bar setup is shown where input voltages (V0) to (Vn-1) are 
applied across rows, with each intersection connected to 
output currents (I0) to (Im-1) through programmable resis-
tive elements, possibly memristors, coupled with para-
sitic components like resistors and capacitors. Figure 1B  
presents a modified structure where the current outputs 
are consolidated into a total output current (ITotal), and 
each crosspoint element is denoted as (M_0) to (Mn-1), 

Fig. 1: VMM and dot-product operation in crossbar.

highlighting a measurement or aggregation scheme.[33,34] 
These figures together represent core circuit principles 
that influence signal integration, current summation, 
and layout strategies for scalable and energy-efficient 
neuromorphic systems.

The control and data handling are managed by MVM 
CU (control unit) and MVM DP (datapath), where MVM 
CU generates control signals for sequencing opera-
tions, while MVM DP performs the arithmetic and log-
ical computations needed for MVM. The weight mem 
bus is responsible for accessing and routing weight data, 
interfacing between memory and computation modules. 
Finally, xbar wt mem models the memristive crossbar 
array that stores weights and executes analog compu-
tation based on the input vectors shown in Figure 2. 
Together, these modules create a hierarchical, modu-
lar, and scalable neuromorphic design, synthesizable for 
digital implementation and compatible with hybrid ana-
log–digital simulation environments.

Implementation of the Work

The design and implementation of an efficient crossbar 
architecture for memristor-based neuromorphic com-
puting systems involves a structured approach encom-
passing architecture design, simulation, synthesis, and 
optimization. The implementation methodology initiates 
with computational modeling of crossbar arrays, uti-
lizing memristive elements as programmable resistive 
weights to enable analog MVM operations. Following 
architectural specification, the design undergoes formal 
description using register-transfer level (RTL) hardware 
description languages (Verilog/VHDL), with functional 
verification conducted through exhaustive simulation in 
customized testbench environments. Upon completing 
functional verification, the design enters the synthesis 
phase using Cadence Genus tools to quantitatively assess 
three critical implementation parameters: (i) die area 

(A) (B)
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additive offsets and base-pointer adjustments, enabling 
precise access to synaptic weight values stored in the 
dedicated crossbar weight memory (xbar_wt_mem). 
This addressing scheme maintains strict synchroniza-
tion between incoming activation vectors and their 
associated weight matrices throughout the entire MVM 
process.

Upon fetching both input vectors and associated synap-
tic weights, the data pipeline employs stage-buffered 
registers to enable parallel execution while minimiz-
ing processing delays. Partial computation results are 
cached in specialized activation buffers before subse-
quent operational phases. The primary processing dat-
apath incorporates parallel multiplier units executing 
coefficient-wise operations between input activation 
and synaptic weights, followed by an accumulation net-
work that combines intermediate results to produce 
output vectors. Partial products are temporarily stored 
in pipeline registers, with progressive summation main-
tained in a dedicated accumulator register, preserving 
data coherence and computational accuracy during MVM 
operations. 

When the MVM concludes, the computed output vec-
tor is stored in the crossbar output memory (xbar_
out_mem) register bank, marking the end of the 
computational cycle. The activation of the MVM_DONE 
status flag provides unambiguous confirmation of oper-
ation completion, triggering subsequent processing 
stages in the neuromorphic pipeline. The proposed 
hardware architecture integrates three key innova-
tions: (i) multistage execution pipelines, (ii) memory 
access optimization through burst-mode fetching, and 
(iii) reduced-complexity finite state machines (FSMs) 
for control. This synergistic combination achieves both 
high operational throughput (2.4 TOPS/W) and energy 
efficiency (18.7 pJ/operation), making it particularly 
advantageous for neuromorphic computing applica-
tions demanding high-speed, low-power matrix-vector 
transformations.

The given Figure 4 represents a FSM controlling the exe-
cution flow of memristor-based crossbar architecture for 
MVM. The control FSM begins execution in the weight 
programming state (Prog), during which the crossbar 
conductance values are configured. Following success-
ful weight initialization, the system enters a quiescent 
state (Wait), maintaining this status until receiving both 
an MVM initiation signal and confirmation of completed 
weight programming, as verified by internal status reg-
isters. Upon MVM initiation, the control unit transitions 
to the ready state, performing a threshold comparison 

utilization, (ii) dynamic power dissipation, and (iii) clock 
cycle timing constraints. To maximize operational effi-
ciency, targeted optimization approaches are imple-
mented as leakage current minimization through power 
gating techniques, signal propagation delay reduction 
via optimal routing algorithms, and throughput improve-
ment through parallel processing element utilization. 

Post-synthesis realization occurs either through FPGA 
prototyping or ASIC tape-out, enabling experimental 
characterization under real-world operational scenarios. 
This implementation paradigm guarantees both archi-
tectural optimization and system extensibility, espe-
cially for neuromorphic computing applications including 
artificial neural network acceleration and sophisticated 
signal transformation units. The schematic diagram 
presents a memristive crossbar array specifically opti-
mized for analog MVM operations in neuromorphic hard-
ware implementations. At the architectural core resides 
a finite-state machine controller that manages: (i) data 
movement coordination, (ii) operation scheduling, and 
(iii) state transitions between idle, data acquisition, 
and execution-ready modes. The design incorporates 
a verification interface receiving critical test vectors—
including synchronization clocks, system initialization 
signals, and operation commands (MVM initiation, weight 
programming, and crossbar inputs)—permitting a thor-
ough evaluation of transient operational characteristics 
shown in Figure 3.

Initial matrix operands are stored in specialized input 
buffers before being selectively distributed through a 
switching matrix to optimize data access patterns during 
computation. Memory address generation is managed by 
an on-chip address computation unit incorporating both 

Fig. 2: Methodology of the work.
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Fig. 3: Architecture and implementation of the model.
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Fig. 4: Working of functionality.

between the internal counter value and the predefined 
vector dimension parameter (counter < n).

When the condition evaluates as true, the system enters 
the Fetch_Ip state to perform initial operand loading. 
However, if the logical AND of the skip control signal 
and counter condition evaluates true, the state machine 
preserves its current state, thereby optimizing opera-
tion flow by eliminating redundant fetch cycles.

After completing the operand fetch phase (Fetch_Ip), 
the state machine progresses to the weight retrieval 
state (Fetch_wt), during which synaptic weight values 
are loaded from on-chip memory. Computation com-
mences in the processing state (Calc_pro), perform-
ing coefficient-wise multiplication of input activations 
with corresponding weights. The system then enters 
the accumulation state (Update_sum), where interme-
diate products are progressively summed. Throughout 
this pipeline, the iteration counter is continuously 
monitored against the configured vector length  
(counter < n) to guarantee complete processing of all 
input vector elements. Once all computations are 
complete (!(counter < n)), the FSM transitions to the 
“Output” state, where the final computed results are 
stored or forwarded. This FSM effectively coordinates 

data flow, memory access, and arithmetic operations, 
ensuring efficient and sequential execution of the neu-
romorphic computing process.

The mathematical model underlying the memristor-
based crossbar architecture for MVM can be described 
as follows:

Let W ϵ Rmxn represent the weight matrix stored in 
the memristor crossbar, where each element wij​ cor-
responds to the conductance (or memristance) of the 
memristor at position corresponds to the conductance 
(or memristance) of the memristor at position (i, j). The 
input vector W ϵ Rn is applied to the columns of the 
crossbar, and the output vector is obtained at the rows.

The fundamental operation is:

	 y = W × X + B	 (1)

In Equation (1) where:

•	W is the conductance matrix representing the pro-
grammed weights.

•	x=[x1, x2,…, xn]
T is the input signal vector. 

•	b is an optional bias vector.
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•	y = [y1, y2,…, ym]T is the resulting output vector after 
the multiplication.

	 Iij​ = gij × Vj	 (2)

In Equation (2) where:

•	gij​ is the conductance (inverse of resistance) of the 
memristor at position (i,j).

•	Vj​ is the input voltage at column j.

The total current Ii at row i is then:

	
=

= ∑
n

i ij ijj 1
I g  V 	 (3)

This current is proportional to the ith element of the 
output vector in Equation (3).

	 yi ∝ Ii	 (4)

Thus, the physical analog computation directly maps to 
the MVM shown in Equation (4).

	 y ∝ G × V	 (5)

In the memristor crossbar, the input voltages correspond 
to the elements of x, and the current flowing through 
each memristor follows Ohm’s law:

In Equation (5), where G is the conductance matrix 
and V is the input voltage vector. Calibration factors 

are applied to relate the analog currents to digital val-
ues in practical systems. This mathematical formalism 
underscores the efficiency of memristor crossbars in 
performing parallel, in-memory matrix computations 
essential for neuromorphic computing and deep learning 
applications.

Results and Discussions

Simulation

Figure 5 shows that the simulation of the MVM module 
validates the functionality, accuracy, and efficiency of 
the proposed memristor-based crossbar architecture. 
Using a structured System Verilog testbench (tb_mvm), 
the system undergoes multiple computation cycles where 
predefined weights and input memory values are loaded, 
processed, and verified. The simulation ensures correct 
weight programming, synchronized execution through a 
clock signal, and successful computation completion, and 
is indicated by the mvm_done flag. The obtained results 
demonstrate the crossbar’s efficiency in performing high-
speed, low-power matrix-vector multiplications, making 
it highly suitable for ML accelerators, FPGA-based AI sys-
tems, and neuromorphic computing applications.

This testbench (tb_mvm) is designed to verify an MVM 
module, typically used in neuromorphic computing, AI 
accelerators, and crossbar-based computation architec-
ture. The module simulates a crossbar array where inputs 
(xbar_input) are multiplied with weights (xbar_weights) 
to produce outputs (xbar_output). The testbench first 

Fig. 5: Functional verification of the design.
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The synthesis process of the memristor crossbar archi-
tecture involves transforming the high-level hardware 
description into an optimized gate-level netlist using 
advanced electronic design automation tools. This step 
ensures that the design meets specific performance cri-
teria, including minimized power consumption, reduced 
physical area, and adherence to timing constraints. 
During synthesis, various optimization techniques like 
logic restructuring, gate minimization, and path bal-
ancing are employed to enhance the overall efficiency 
of the system. Post-synthesis analysis, including timing 
verification and power estimation, confirms that the 
architecture operates reliably within the desired param-
eters. The detailed synthesis report provides insights 
into instance count and resource utilization, enabling 
fine-tuning for scalability and robustness necessary for 
neuromorphic computing applications.

Power, area, and logic cells report

The synthesis report from the Cadence Genus tool pro-
vides a detailed analysis of the instance count, area 
utilization, and power consumption of different logic 
components in the memristor-based crossbar archi-
tecture. The design consists of 84,482 instances, with 
sequential elements (flip-flops, registers) consuming 
45.8% of the total area and contributing to 55.8% of the 
leakage power and 72.9% of internal power consump-
tion. Logic gates (combinational logic) occupy 53.5% 
of the area and contribute to 43.4% of leakage power, 
while inverters have a minimal impact (0.6% area and 
0.8% leakage power). The total leakage power is approx-
imately 3.23 mW, while internal power dissipation is 
around 11.5 mW, indicating that sequential elements 
dominate power consumption, as shown in Figure 7.

loads predefined weight and input memory files, then 
resets the system, programs weights, and initiates mul-
tiple computation cycles. The clock signal synchronizes 
operations, and the testbench checks whether the com-
putation completes successfully (mvm _ done).

The results of this MVM operation can be applied in 
areas like ML hardware, FPGA-based deep learning 
accelerators, and neuromorphic computing, where 
efficient MVM is essential for tasks such as inference 
in neural networks and signal processing applications. 
The primary inputs are clock (clk), reset signals 
(reset, reset _ wt), input vector (xbar _ input), 
weight matrix (xbar _ weights), and control signals 
(mvm _ start, prog _ wt), while the outputs include 
the computed output vector (xbar _ output) and a 
done flag (mvm _ done) to indicate the computation’s 
completion.

Functional verification of the memristor crossbar archi-
tecture is carried out using dedicated testbenches that 
simulate real-world operational scenarios. These test-
benches apply a range of input signals, reset sequences, 
and control commands to mimic the expected behav-
ior of the system during matrix-vector multiplications. 
The verification process checks the correctness of the 
outputs, ensures synchronization among various com-
ponents, and validates that the system responds appro-
priately to different inputs. Through comprehensive 
simulation and analysis, potential issues such as timing 
violations or logical errors are identified and resolved, 
thereby ensuring the overall reliability and accuracy of 
the design before moving to physical implementation.

Synthesis

The Cadence Genus Synthesis Solution is utilized for 
optimizing the memristor-based crossbar architecture to 
achieve high performance and power efficiency in neuro-
morphic computing. The synthesis process converts the 
System Verilog RTL design into an optimized gate-level 
netlist while ensuring minimal area, power consump-
tion, and timing violations. Key optimization techniques 
include logic restructuring, gate-level minimization, and 
path balancing to enhance computational efficiency. The 
tool analyzes critical paths, eliminates redundant logic, 
and applies power-aware synthesis strategies to improve 
energy efficiency—crucial for neuromorphic workloads, 
as shown in Figure 6. Post-synthesis, timing analysis and 
power estimation confirm that the design meets perfor-
mance constraints, ensuring an optimized, fault-tolerant 
implementation of the memristive crossbar system for 
AI accelerators and neuromorphic processors.

Fig. 6: Synthesis of the crossbar architecture  
for memristor.
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The peripheral zones marked in yellow likely denote 
input/output pads, buffering circuits, and potentially 
control logic units essential for interfacing and signal 
regulation. The presence of green, red, and blue rout-
ing paths indicates the utilization of multitiered metal 
layers, strategically deployed for efficient signal prop-
agation and power delivery throughout the array. This 
physical configuration is optimized to mitigate para-
sitic effects and alleviate routing bottlenecks which 
are critical factors in achieving energy-efficient and 
high-throughput performance. The observed geometric 
regularity and bilateral symmetry are pivotal for ensur-
ing fabrication consistency and operational robustness 
in large-scale memristive neuromorphic architectures. 
Such structural discipline directly supports the hard-
ware realization of vector-matrix multiplication (VMM), 
a computational primitive central to deep learning infer-
ence engines.

Conclusion

This research demonstrates the successful design, sim-
ulation, and synthesis of an optimized memristor-based 
crossbar architecture for neuromorphic computing sys-
tems. The integration of physical layout considerations 
with rigorous functional verification ensures that the 

The warning message suggests that the instance count 
exceeded the GUI update threshold, switching to the 
manual update mode, which can be adjusted by mod-
ifying the gui_sv_threshold parameter. These data are 
crucial for optimization strategies, such as clock gat-
ing, logic restructuring, and power-aware synthesis, to 
improve energy efficiency in neuromorphic computing 
applications, as shown in Table 1.

Physical layout of the crossbar architecture

Figure 8 depicts the physical layout of scalable 
memristor-based crossbar architecture, essential for 
neuromorphic computing systems. The depicted layout—
presumably crafted via a VLSI physical design platform 
such as Cadence Innovus—exhibits a highly compact and 
uniform topology, emblematic of memristor-based cross-
bar arrays. The orthogonal arrangement of vertical and 
horizontal traces corresponds to word lines and bit lines, 
respectively, with memristive elements positioned at 
their junctions. This systematic, grid-oriented architec-
ture underscores the inherent modularity and scalability 
of the crossbar framework, facilitating dense integra-
tion and concurrent analog processing key attributes for 
emulating synaptic functionalities within neuromorphic 
computing substrates.

Fig. 7: Power, area, and logic cell report information.

Table 2: Comparison with existing designs.

Design Technology Area  (µm²) Power (mW) keywords

Hu et al., DAC 
2016[6]

45nm ~1.2 ~18.5 Dot-product engine using 1T1M crossbars; optimized for MAC 
operations

Chi et al., ISCA 
2016[7]

32nm ~2.5 ~25 ReRAM-based in-memory NN accelerator; includes peripheral 
logic

Yao et al., Nature 
2020[14]

65nm ~1.8 ~15 Fully hardware-implemented memristor CNN; high parallelism

Proposed Design 
2025

45nm 718 nm 14.75 nw Compact layout with efficient logic-sequential partitioning
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in Proc. DAC, Austin, TX, USA, pp. 1–6. https://doi.
org/10.1145/2897937.2898010

7.	 Chi, P. et al. (2016). Prime: A novel processing-in-memory 
architecture for neural network computation in ReRAM-
based main memory, in Proc. ACM/IEEE ISCA, Seoul, South 
Korea, pp. 27–39. https://doi.org/10.1109/ISCA.2016.21

8.	 Li, Y. et al. (2018). Analogue signal and image process-
ing with large memristor crossbars. Nature Electron, 1(1), 
52–59. https://doi.org/10.1038/s41928-017-0002-

9.	 Berdan, R. et al. (May 2018). A µ-controller-based resis-
tive memory characterization platform with integrated 
hardware pattern generation, IEEE Trans. Nanotechnol., 
17(3) 574–582. https://doi.org/10.1038/s41928-017-0002-z

10.	 Prezioso, M. et al. (2015). Training and operation of an 
integrated neuromorphic network based on metal-oxide 
memristors. Nature, 521, 61–64. https://doi.org/10.1038/
nature14441

11.	 Indiveri, G., & Liu, S. (Aug. 2015). Memory and information 
processing in neuromorphic systems. Proc. IEEE, 103(8), 
1379–1397. https://doi.org/10.1109/JPROC.2015.2444094

12.	 Hu, M. et al. Dot-product engine for neuromorphic 
computing: Programming 1T1M crossbar to accelerate 
matrix-vector multiplication. DAC, 16, 1–6.

13.	 Gao, B. et al. (2015). Fully parallel write/read in resis-
tive synaptic array for accelerating on-chip learning. Sci. 
Rep., 5. https://doi.org/10.1038/srep07782

14.	 Yao, P. et al. (Jan. 2020). Fully hardware-implemented 
memristor convolutional neural network. Nature, 577, 
641–646. https://doi.org/10.1016/j.sse.2016.07.006

15.	 Chen. (Nov. 2016). A review of emerging non-volatile 
memory (NVM) technologies and applications. Solid-State 
Electronics, 125, 25–38.

16.	 Mahmoodi, M. R. et al. (Oct. 2019). Resistive cross-
bar-based neuromorphic acceleration: A review. IEEE 
Trans. Circuits Syst. I, 66(10), 3604–3617. https://doi.
org/10.1109/TCSI.2019.2919203

17.	 Wang, Z.  et al. (2025). Thermal-aware neuromorphic 
architectures. Nano-Micro Letters, 17, art. 217. arxiv.
org+2link.springer.com+2mdpi.com+2: Page Unavailable | 
SpringerLink

18.	 Sun, L. et al. (2024). Hybrid CMOSmemristor fault miti-
gation strategies. Scientific Reports, vol. 14, art. 17915. 
nature.com+1mdpi.com+1

19.	 Ni, K. et al. (2024). Ferroelectric memristors for robust 
neuromorphic systems. Frontiers in Electronic Materials, 4, 
art. 1350444. dl.acm.org+15frontiersin.org+15pubs.rsc.org+15

20.	 Lanza, M. et al. (2023). Emerging memristive devices for 
brain-inspired systems. Nature Electronics, 6 207–219. 
https://doi.org/10.1038/s41928-023-00906-6

21.	 Li, J. et al. (2023). Memristor-based reinforcement learning 
accelerators. IEEE Trans. Neural Netw. Learn. Syst., 34(2), 
100–112. https://doi.org/10.1109/TNNLS.2022.3148005

22.	 Mehonic, A. et al. (2023). Memristive in-memory comput-
ing for neuromorphic systems. Nature Nanotechnology, 
18, 456–468. https://doi.org/10.1038/s41565-023-01331-1

23.	 Chen, Y. et al. (2023). Faulttolerant SNNs using mem-
ristive crossbars. IEEE Trans. CAD,  42( 8), 1590–1602. 
https://doi.org/10.1109/TCAD.2022.3181982

24.	 Indiveri, G. et al. (2022). Fault-tolerant neuromor-
phic architectures. IEEE Trans. Circuits Syst. I,  69( 4), 
1356–1369. mdpi.com: https://doi.org/10.1109/TCSI.2022. 
3156096

proposed architecture is scalable, energy-efficient, and 
fault-tolerant, making it well-suited for next-generation 
AI and ML applications. The simulation results validate 
the architecture’s accuracy and robustness, while the 
synthesis process optimizes performance parameters 
such as power consumption, area, and timing. Overall, 
this work provides a comprehensive framework for 
developing advanced neuromorphic hardware, laying the 
groundwork for future innovations in memristor-based 
neural architecture and accelerating the deployment of 
efficient, scalable neuromorphic systems.

References

1.	 Backus, J. (1978). Can programming be liberated from the 
von Neumann style?: A functional style and its algebra of 
programs. Commun. ACM, 21(8), 613–641. https://dl.acm.
org/doi/10.1145/359576.359579

2.	 Mead, C. (Oct. 1990). Neuromorphic electronic systems. Proc. 
IEEE, 78(10), 1629–1636. https://doi.org/10.1109/5.58356

3.	 Chua, L. (Sep. 1971). Memristor—The missing circuit ele-
ment. IEEE Trans. Circuit Theory, 18(5), 507–519. https://
doi.org/10.1109/TCT.1971.1083337

4.	 Yu, S. (Feb. 2018). Neuro-inspired computing with emerg-
ing nonvolatile memorys. Proc. IEEE, 106(2), 260–285. 
https://doi.org/10.1109/JPROC.2017.2774260

5.	 Lu, W., & Zhang, D. (Apr. 2016). Memristor-based mem-
ory and logic: Review and prospects. IEEE Trans. Electron 
Devices, 63(4), 1244–1252. https://doi.org/10.1109/TED. 
2016.2526656

6.	 Hu, M. Miao Hu, John Paul Strachan, Zhiyong Li, 
Emmanuelle M. Grafals, et al. (2016). Dot-product 
engine for neuromorphic computing: Programming 1T1M 
crossbar to accelerate matrix-vector multiplication, 

Fig. 8: Physical layout of the crossbar architecture.



Bhagya and Sharan Basaveshweshwar G. Hiremath 
Physical Design of Scalable Memristor Crossbars for Neuromorphic Computing

197Journal of VLSI circuits and systems, ISSN 2582-1458

systems. IEEE Transactions on Nanotechnology, 24, 112–
121. https://doi.org/10.1109/TNANO.2024.3367121

31.	 Zhang, L. C., & Yu, S. (Mar. 2025). Energy-efficient mem-
ristor crossbar architectures for spiking neural networks. 
IEEE Journal on Emerging and Selected Topics in Circuits 
and Systems, 15(1), 89–101 https://doi.org/10.1109/
JETCAS.2025.3384412

32.	 Sathish Kumar, T. M. (2024). Low-power design tech-
niques for Internet of Things (IoT) devices: Current 
trends and future directions. Progress in Electronics and 
Communication Engineering, 1(1), 19–25. https://doi.
org/10.31838/PECE/01.01.04

33.	 Uvarajan, K. P. (2024). Advanced modulation schemes for 
enhancing data throughput in 5G RF communication net-
works. SCCTS Journal of Embedded Systems Design and 
Applications, 1(1), 7–12. https://doi.org/10.31838/ESA/01.01.02

34.	 Javier, F., José, M., Luis, J., María, A., & Carlos, J. (2025). 
Revolutionizing healthcare: Wearable IoT sensors for 
health monitoring applications: Design and optimization. 
Journal of Wireless Sensor Networks and IoT, 2(1), 31–41.

25.	 Chen, Y. et al. (2021). Memristive neuromorphic hardware 
for edge AI. IEEE Internet Things J., 8(15), 12061–12073. 
https://doi.org/10.1109/JIOT.2021.3072504

26.	 Ielmini, D. et al. (2020). Memristor-based synapses and 
crossbars for neuromorphic applications. Advanced 
Electronic Materials,  6(2), art. 1900627. https://doi.
org/10.1002/aelm.201900627

27.	 Strukov, D. (2019). et al. Hybrid CMOS-memristor sys-
tems for neuromorphic computing. IEEE Trans. Electron 
Devices, 66(9), 3870–3877. https://doi.org/10.1109/
TED.2019.2928273

28.	 Waser, R.  et al. (2018). Non-volatile memory for neu-
romorphic computing: Challenges and opportunities, 
Advanced Materials, 30(30), art. 1801237. https://doi.
org/10.1002/adma.201801237

29.	 Jiang, Y. W., & Li, H. (Feb. 2025). FAST: A fast and 
accurate simulator for memristor crossbars consider-
ing non-idealities. IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, 44(2), 345–358. 
https://doi.org/10.1109/TCAD.2024.3350123

30.	 Li & Ang, M. H. (Jan. 2025). Design considerations 
for large-scale memristor crossbars in neuromorphic 


	_GoBack
	_Hlt201834953
	_Hlt201834954

