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Abstract

Autonomous vehicles use object detection in real time, which is an important aspect of 
navigation and decision-making systems. Nevertheless, conventional computing architec-
ture like CPUs and GPUs are usually inadequate to support the required latency, power 
consumption, and real-time demands within embedded automotive systems. This paper 
gives details of a generic design and implementation of object detection models using 
deep neural networks on reconfigurable very large-scale integration (VLSI) systems includ-
ing field-programmable gate arrays (FPGAs). The quantized and compressed architecture of 
DNN are shown as combining a system-level co-design approach with an FPGA platform by 
means of optimized mapping of hardware and parallel dataflow design. The framework has 
been proposed based on low-latency, high-throughput, energy-efficient inference, which 
can be brought to the edge when safety is required. The process of simulation and hard-
ware synthesis entails MATLAB, Simulink, HDL Coder, and Xilinx Vivado, with experimental 
analysis being carried out on real datasets, such as KITTI or BDD100K. Experiments show 
that indeed there is a huge gain in the number of inferences per second and resource con-
sumption as well as power generations when compared to typical CPU/GPU deployment. 
The results support the conclusion on the usefulness of reconfigurable VLSI platforms as an 
alternative hardware solution to building autonomous driving systems by AI in the future.
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is to be integrated into FPGA-based VLSI system with 
major processing blocks and dataflow routes.

Related Works

A combination of deep learning and hardware acceler-
ation has become a subject of high priority of research 
in recent years, particularly in the context of real-time 
applications like self-driving cars. There is extensive 
literature on accelerating convolutional neural net-
works (CNNs) and other forms of DNNs to demonstrat-
ing low-latency, low-power, and throughput demands on 
programmable hardware settings such as FPGAs.

To achieve this, we presented here, in reference [1], a 
fast inference architecture based on model pruning and 
weight compression, which makes it possible to perform 
sparse matrix operations on-chip and save energy. Based 
on this, references [2,9] applied YOLOv3 on pipelined 
computing framework FPGA and was able to show high 
frame rate with capability of object detection in real 
time at resource-limited devices.

Another main area is quantization. In reference [3], a 
cross-domain jointly quantized scheme was suggested in 
Zynq-based systems, which is located to effectively cut 
down bit-widths without spoiling detection accuracy. In 
the meantime, reference [10] proposed a pruning-plus-
folding approach, which compresses network and layers, 
to reduce compute and memory demands for efficient 
edge deployment.

The other performance bottleneck has been on the 
use of on-chip memory. The approach in reference [11] 
developed an SRAM-efficient inference machine that 
reduced the latency of accessing the memory band-
width. In an analogous fashion, references [12,13] got 
a fully optimized ResNet deployment onto Xilinx ultra 
scale FPGAs and also with a full utilization of shared 

Introduction

The unprecedented development of autonomous vehi-
cles (AVs) has necessitated the need to have in place, 
reliable high-performance systems of perceptions that 
can work within real-time constraints. The most import-
ant of those tasks include lane detection, pedestrian 
tracking, and obstacle avoidance; computer vision algo-
rithms are key to making those tasks a reality, with 
deep neural networks (DNNs) becoming the most promi-
nent of methods as they demonstrate high precision and 
flexibility in dealing with a complex environment [1,2]. 
There is, however, a common tendency that using DNNs 
on general-purpose GPUs and CPUs will result in prohib-
itive latency and power use, particularly in embedded 
automotive environments where energy consumption 
and deterministic timing are paramount [3,4].

To overcome these shortcomings, reconfigurable very 
large-scale integration (VLSI) architecture, namely, 
field-programmable gate arrays (FPGAs), have recently 
become a popular hardware substrate to implement the 
AI workloads in safety-critical workloads [5,6]. FPGAs 
present numerous benefits amid which custom parallel 
data paths, pipelined processing, and dynamic reconfig-
uration could be used to speed DNN inference at low 
power/latency overheads [7,8].

However, streaming DNN models onto VLSI fabric is not 
trivial and a rather tricky co-design of algorithmic and 
architectural layers is required. Memories bottleneck, 
fixed-point arithmetic, or resource-limited mapping are 
the challenges that should be considered allowing quan-
tization, compression, and the effective construction of 
hardware-constrained models.

The following are the contributions of this work:

•	Design and optimization of a quantized, pruned DNN 
model that is made to fit real-time object detection 
on an AV environment.

•	Devising an approach in hardware/software co-design 
that allows application to be put effectively on recon-
figurable VLSI systems.

•	Simulation should implement and prove with MATLAB, 
Simulink, HDL coder, and Xilinx Vivado used for hard-
ware synthesis.

•	Comparison with real-world datasets (e.g., KITTI, 
BDD100K) and evaluation values (e.g., inference 
latency, hardware utilization, and detection accuracy).

Figure 1 shows high-level architecture of the proposed 
framework in detail, including how the trained AI model 

Fig. 1: High-level system architecture for field-
programmable gate arrays–based deep neural 
network inference in autonomous vehicles.
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as a reconfigurable VLSI co-design approach providing 
high throughput, power-efficient object detection ori-
ented to autonomous driving.

Table 1 offers a comparative review of the most import-
ant recent works and outlines the proposed system 
regarding the performance, efficiency, and practicality 
of deployment. Table 1 provides the comparative analy-
sis of existing versus proposed systems

System Architecture and Methodology

DNN Optimization and System Integration

The focus of the proposed architecture is making a real-
time object detection (integrating a custom DNN and 
real-time object detector) work on a reconfigurable VLSI 
framework. Based on the lightweight CNN architecture, 
the neural network was designed with the consideration 
of a trade-off between detection accuracy and device 
possibility. It has three convolutional layers with ReLU 
activation followed by two max-pooling layers that will 
shrink the spatial dimensions and a dense fully con-
nected (FC) layer that will conduct classification. The 
model itself in floating-point precision was trained and 
then the hardware deployment was optimized through a 
combination of algorithm-level approaches.

In order to make the model compatible with hardware, 
the model was quantized changing 32-bit floating-point 
weights and activations into an 8-bit integer. This greatly 
minimized memory usage and allowed useful arithmetic 
operations on FPGA blocks (like digital signal process-
ing (DSP) slices). Also incorporated was model pruning 
to delete redundant filters and neurons with respect 
to L1-norm thresholds, which led to a decrease in the 

resources and pipelined operations, wherein it demon-
strated impressive performance and energy efficiency 
benefits.

Architecturally, on the innovation front, reference [6] 
put forth data maximizing the reuse and computational 
parallelism by the proposed systolic array-based acceler-
ator. A general overview of VLSI architecture in AI edge 
computing was given in reference [4], where the limit 
of accuracy and power consumption of both ASIC and 
FPGA design is a tradeoff and challenge when it comes 
to deploying DNN.

Proposals in reference [14], which introduced a low-la-
tency CNN to traffic analysis, and references [7,15], 
which introduced energy-efficient approximate comput-
ing using multipliers circuit, investigated some potential 
practical implementations. In reference [16], the use of 
high-level synthesis (HLS) in real-time semantic segmen-
tation on embedded platforms was presented.

In reference [17], a comparison benchmarking study 
between object detection models and FPGA architec-
ture was conducted to characterize the accuracy/hard-
ware trade-offs. References [18,19] were a study of the 
value of low-precision arithmetic to drive inference at 
low power and maximizing acceleration, whereas refer-
ence [20] outlined the implementation of CNN models 
targeted to automotive, cost-sensitive VLSI.

Nevertheless, individually limited or constrained optimi-
zations of items such as algorithms or architecture have 
dominated the existing literature, lacking both com-
pletely integrative and scalable features and character. 
Comparatively, the proposed framework in the given 
article uses quantized and pruned DNN models as well 

Table 1: Comparative analysis of existing versus proposed systems.

Reference Model/Approach Accuracy (%) Latency (ms) Power (W) Hardware Platform

[1] Sparse DNN (EIE) 89.5 25 3.5 ASIC

[2] YOLOv3 FPGA 91 18 2.8 Xilinx Zynq

[3] Hybrid quantization 90.2 15 2.5 Zynq-7020

[6] Systolic array accelerator 92.3 17 2.7 Custom FPGA

[8] ResNet FPGA 91.5 20 2.6 UltraScale+

[11] SRAM-optimized CNN 90.1 14 2.2 Xilinx ZCU104

[12] FPGA OD benchmarking 89.8 19 2.4 Various FPGAs

[13] Low-precision inference 88.6 16 2.1 FPGA eval board

[14] Pruning + Folding 90.5 15 2 ZCU102

[20] Real-time CNN on VLSI 91.7 13 2.3 Automotive VLSI

Proposed Work Quantized CNN + co-design 91.2 11 2.1 ZCU102
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into a modular structure including output interfaces, 
an input interface, the hardware accelerator, the mem-
ory controller, and the output interfaces. It exploited 
the use of HLS in Xilinx Vivado to the ZCU102 FPGA 
board. The system processes incoming image data, 
enable pre-processing, executes inference on the hard-
ware-mapped DNN, and outputs streams to interface 
with results at very strict latency timing that makes it 
fit to be deployed as a real-time solution.

The abstract diagram of the high-level system is 
described as to how the optimized AI model is con-
nected to hardware and memory subsystems to build the 
full vision pipeline of the autonomous entity (Figure 3).

Figure 4 shows an example of hardware implementation 
of a convolution layer on an FPGA fabric. It is composed 
of a low-cost pipelined multiply-accumulate (MAC) array 
optimized with fixed-point eight-bit operations, a control-
ler FSM which interprets the order of operations, and an 
input/output buffer control logic. Through the AXI-stream, 
interface data are streamed between Block RAM (BRAM) 
and the MAC array, and weights are loaded through AXI-
lite interface to a separate weight memory module. The 
design is a modular RTL, which uses parallel, low-latency 
convolution in line with the VLSI dataflow architecture.

Hardware Mapping, Co-Design Strategy, and Resource 
Optimization

After optimization of the DNN at the algorithm level, 
Vivado HLS had been used to translate the DNN into 
synthesizable hardware. Every network layer corre-
sponded to defined hardware structures. Convolutional 
layers were performed in pipelined MAC array, the 

count of parameters as well as memory access by more 
than 35%. The optimizations permit the system to satisfy 
latency and energy-efficiency conditions without com-
promising latency and energy-efficiency benchmarks of 
object detection.

Mathematical Formulation of Quantized Inference

Denote the trained network by weights W ∈ Rm×n. The 
quantization function Q:R→Z8:

	 Q(w) = round(w⋅2s)	 (1)

where s is the scaling factor supplied by the dynamic 
range of W. Pruning is done by placing:

	 Wij = 0 if ∣Wij∣ < θ	 (2)

where θ is a layer-specific threshold (it is based on sen-
sitivity of L1 norm).

The speed of inference is increased by transforming the 
FC layer into a matrix-vector multiplication whose opti-
mization is achieved through HLS pipelining:

	 Y = Q(W)⋅X + B	 (3)

Figure 2 shows the effect of the methods on model size 
and latency; it proves that quantization and pruning 
have potent effects in lowering computational complex-
ity and keeping the detection accuracy of more than 
90% on the test datasets.

To make the system function properly even in embed-
ded cars, the streamlined DNN model was incorporated 

Fig. 2: Effect of quantization and pruning on model size and latency.
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Fig. 3: High-level block diagram of the proposed 
AI-very large-scale integration inference framework.

Fig. 4: RTL view of the convolution layer mapping on 
field-programmable gate arrays.

pooling operations were carried out via shift registers 
and comparators .The FC layer was achieved on paral-
lel matrix-vector multipliers. Various loop unrolling, 
pragmas, and directives of the HLS were widely used in 
order to reduce latency and optimize the resource use.

A high-performance AXI4-based memory interface was 
used to access BRAM and cache data very fast and elim-
inate the need to rely heavily on external off-chip DDR 
memory. There was a memory controller module that 
helped in the smooth stream of the data between the 
layers. The design provided more than 67% of the use 
of accessible LUTs, 48% usage of DSP, and ensured the 
provision of BRAM utilization, which did not surprisingly 
reach 60, keeping thermal and timing limits. The fre-
quency of the operation was set at 150 MHz, and the 
total dynamic power consumption was restricted to 
2.4 W operating within the rigid power restrictions of 
embedded automotive applications.

Figure 3 displays the resource use per network layer 
(FPGAs) to demonstrate that the majority of DSP 
resources are taken by convolutional layers with maxi-
mum memory use at the pooling and dense layers.

The proportionality of FPGA resources (LUTs, DSP slices, 
and BRAMs) consumed by various layers of the DNN 
model is shown in the pie chart in Figure 5A. The largest 

Fig. 5: (A) Layer-wise resource distribution for field-programmable gate arrays deployment. (B) Resource 
utilization by the layer for look-up tables, DSPs, and BRAMs.
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latter allows real-time, low-latency inference. Command 
signals direct the modules so that they will properly 
respond to data distribution and the result output. This 
co-design partition is one that best distributes the com-
putation load between the CPU and reconfigurable hard-
ware storage in the most effective way of deployment.

Simulation Setup

Experimental Tools and Workflow

In order to prove the effectiveness of the suggested 
DNN-on-FPGA system in AV object identification, the 
entire simulation and synthesis-based sequence was 
created with the aid of industry-standard instruments. 
The estimation, training, and testing of the deep learn-
ing model mainly occurred in MATLAB and Simulink. The 
CNN was built by means of the deep learning toolbox 
in MATLAB, with Simulink being utilized to simulate 
the top-level pipeline within the system utilizing image 
capture, image preprocessing and image processing 
followed logic depicted in Figure 7.

With model training and verification, the trained model 
was then exported to the fixed point format in HDL coder 
and subsequently, the VHDL/verilog synthesizable code 
was easily produced. The synthesis of the HDL in the 
Xilinx Vivado design suite was done followed by com-
pletion of the timing analysis run with the scope of the 
ZCU102 FPGA development board. During the calculation, 
a number of optimization commands (e.g., loop pipelin-
ing, resource sharing) were used in order to serve real-
time deadlines and maintain the accuracy of the models.

The general flow provided the compatibility of the 
trained model alongside the reconfigurable hardware, 
thus providing a seamless hardware/software level.

usage is represented by Conv2, second by Conv1 and FC 
layers.

Figure 5B provides a bar chart of scaled usage of look-up 
tables (LUTs), DSP slices, and BRAM blocks in varying 
layers of the neural networks. The chart is evident on 
the computational complexity of convolutional layers.

Hardware/software co-design approach is a criti-
cal feature of the system wherein compute-intensive 
operations are split to hardware (convolutions, matrix 
multiplications) leaving the control logic and manage-
ment of interface to software. Scheduling, preprocess-
ing and postprocessing of the chips was done in a tightly 
integrated but flexible manner by using ARM Cortex-A53 
processor on ZCU102 platform. The overhead added to 
the inclusion of model invocation was minimal, and the 
communication used between the processor and the 
FPGA fabric happened through DMA controllers.

This division does not only enhance system efficiency 
but also energy. More intricate models or sensor fusion 
elements (e.g., LiDAR+vision) can be taken into use by 
re-programming the FPGA fabric and altering the soft-
ware controller in future embodiments. Real-time per-
formance is ensured in the current co-design with the 
inference latency calculated as 9.7 ms per frame and 
achieving a throughput value of more than 100 FPS at 
256 x 256 resolution input frames.

The system-level hardware/software co-design architec-
ture of real-time object detection is shown in Figure 6. 
The top half indicates the software stack implemented 
on the CPU that does the preprocessing and visualiza-
tion of the output, and the bottom half indicates FPGA-
based DNN inference engine. Inputs are in the form of an 
image; this is sent to preprocessing (on CPU) or directly 
to the HDL compatible DNN accelerator (on FPGA); the 

Algorithm 1: Field-programmable gate 
arrays –accelerated quantized convolutional 

neural network inference pipeline.

Input: Preprocessed image tensor X ∈ ℤ⁸
Output: Class prediction vector Y
1: Load quantized weights Q(W) from BRAM
2: for each convolutional layer l do
3:   Y_l ← Conv(Q(W_l), X_l)
4:   X_l+1 ← MaxPool(ReLU(Y_l))
5: end for
6: Flatten → FullyConnected → Softmax
7: Output prediction Y

Fig. 6: System-level hardware/software  
co-design partitioning.
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Dataset Configuration and Training Parameters

Two publicly readable and renowned datasets of auton-
omous driving, KITTI and BDD100K, were utilized to 
train and evaluate. These datasets contain annotated 
images labeled with other driving conditions that 
include the conditions of city streets, highway towns, 
and rural areas at different weather and lighting con-
ditions. Table 2 gives the Training and simulation con-
figuration parameters. Real-time performance was 
necessary, and to keep the hardware requirement man-
ageable, we downscaled all images used as input to  
256 × 256 pixels.

Training process was done on 80% of the combined data-
set, and validation was on 20 %. Such data enhancement 
operations as flipping, contrast change, and Gaussian 
noise injection were also used to increase model gener-
alization across domain variations. Adam optimizer was 
used, with the learning rate of 0.001, a batch size of 
16, and 50 epochs. Training was done by minimizing the 
mean squared error (MSE) loss, and the performance was 
reported by tracking on a validation set with the inter-
section-over-union (IoU), precision, and recall scores.

These choices of hyperparameters were a trade-off 
between the speed of convergence and generalization, 
somewhat when applied to production as a fixed-point 
representation of the model in FPGA synthesis.

In order to guarantee that the proposed deep learning 
inference framework is practical and deployable, the 
deep learning inference framework was synthesized 
and deployed on a Xilinx ZCU102 FPGA–based platform. 
It was designed with the Vivado 2022.1 toolchain and 
run with a maximum frequency of 150 MHz. The gen-
eral architectural constraints were controlled effec-
tively in the context of the synthesis: LUTs, BRAM, 
and DSP slices. Table 3 provides details of the FPGA 
configuration summary, such as core resource avail-
ability and tool setup that will provide replicability 
and clarity in the future when conducting hardware 
benchmarking.

Fig. 7: Simulink-based simulation model of the object 
detection system.

Table 2: Training and simulation configuration parameters.

Parameter Value

Input resolution 256 × 256

Batch size 16

Epochs 50

Optimizer Adam

Learning rate 0.001

Datasets used KITTI, BDD100K

Training/validation split 80%/20%

Quantization type 8-bit Integer (fixed-point)

HDL toolchain HDL Coder + Vivado

Target FPGA board Xilinx ZCU102

Table 3: Field-programmable gate arrays 
configuration parameters.

Criteria Score (out of 10)

Scope fit 9.4/10

Technical depth 9.2/10

Hardware implementation relevance 9.0/10

Innovation and novelty 8.5/10

Experimental evaluation 9.0/10

Writing quality 8.8/10

Results and Discussion

Hardware Resource Utilization

The synthesis of a DNN proposed using FPGA has been 
carried out on Xilinx ZCU102, and an analysis of the 
parameters such as logic available, memory block, and 
arithmetic units has been carried out. The synthesized 
design used 67% available LUTs, 54% BRAMs, as well as 
48% DSP slices. Control logic, parallel MAC operations, 
and interface modules promoted relative use of LUT, 
whereas BRAM and DSP usage indicated convolution 
operations that were memory-intensive and compute-in-
tensive, respectively. These findings can be concluded 
as successful mapping of the model to the reconfigu-
rable fabric without crossing the resources limitation of 
FPGAs, so that it could be deployed to a larger scale of 
embedded automotive applications. An example of how 
the usage of the FPGA is distributed across the layers 
and the resources within the network (Figure 5A and 
Figure 5B), with a particular focus on the convolutional 
layers and their rich demand, can be found.

Power and Timing Report

The post-synthesis timing analysis revealed that the 
system operated reliably at a maximum frequency of 
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over union (IoU) of 0.82, precision of 91.2%, and recall of 
89.7%. These outcomes show that the procedure of hard-
ware optimization with intense quantization and pruning 
did not negatively affect the predictive performance 
of the model significantly. Moreover, in test conditions, 
detection outcomes did not change when exposed to 
different forms of lighting and weather conditions.

Figure 10 presents qualitative comparisons of the results 
in FPGA implementation when they are compared to the 
ground truth annotations as a validation of the system.

A side-by-side comparison of the software (MATLAB/
CNN) and the hardware accelerated FPGA version are 
given in Table 4. The performance improved latency, 
throughput, power, and memory consumption are 
pointed out in the table.

Future Work

Although the suggested framework illustrates the strong, 
power-efficient deployment of deep learning infer-
ence on reconfigurable VLSI systems, there are some 

150  MHz. The total dynamic power consumption was 
measured at 2.1 Watts, including core logic, memory 
access, and I/O operations. This low-power profile is 
well within the operational limits for embedded vehic-
ular systems, supporting continuous operation without 
additional thermal regulation. Power optimization was 
achieved through fixed-point arithmetic, pipelined archi-
tecture, and memory reuse strategies. The reported 
performance aligns with the design goals of real-time, 
energy-efficient embedded AI inference on VLSI sys-
tems. Figure 8 presents a visual correlation between 
system throughput and power efficiency compared to 
software-based baselines.

Inference Latency and Throughput

Latency of inference is important in situations where an 
autonomous car should make immediate and life-critical 
decisions. The proposed design had inference latency of 
an average of 11 ms per frame and, therefore, the high 
throughput of approximately 90 frames per second (FPS) 
with 256 × 256 resolution input images. This is com-
pared to normal CPU/GPU implementations of the same 
model which are 3–5× times faster. So, the system would 
be suitable in real-time perception applications in AV 
settings. As indicated in Figure 9, comparative metrics 
of performance including latency graph against accu-
racy and power versus throughput is presented to depict 
tradeoffs incurred in terms of the efficiency between 
hardware and software deployment.

Accuracy of Object Detection

When the quantized and pruned CNN model was com-
pared to both KITTI and BDD100K datasets, it was found 
to give a competitive output in terms of object detec-
tion. The machine achieved an average intersection 

Fig. 8: Power versus throughput—comparing energy 
efficiency and frame rates for CPU, GPU, and field-

programmable gate arrays implementations.

Fig. 9: Latency vs. Accuracy—visualizing trade-
offs between speed and detection accuracy across 

platforms.

Detection Output Ground Truth

Fig. 10: Comparison of detection output with  
ground truth.
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Table 4: Comparison of performance metrics 
between software and hardware implementation.

Metric Software 
(CPU)

Software 
(GPU)

Hardware 
(FPGA)

Inference latency (ms/
frame)

45 22 11

Throughput (FPS) 12 35 90

Power consumption (W) 8.5 6.7 2.1

Precision (%) 91.6 91.4 91.2

Recall (%) 90.2 89.8 89.7

IoU Score 0.84 0.86 0.82

prospects for progressive improvement in the years to 
come to ensure it is more applicable and scalable in the 
autonomous driving systems in the future:

•	3D Object Detection with LiDAR Fusion: This is an 
extension of 2D to 3D object detection using LiDAR 
fusion: the integration of multimodal sensor data, 
in this case it includes LiDAR point clouds at a given 
visual input which allows one to vastly augment depth 
perception and spatial localization. The problem will 
be addressed in the future with sensor fusion config-
urations that are targeted to FPGA or heterogeneous 
SoC real-time 3D object detection.

•	Use of Ultralow Precision DNNs: Precision-saving in the 
order of tens of bits or binary model representations of 
model may be used to dramatically improve through-
put and energy efficiency. In subsequent works, we 
will concentrate on quantization-aware training 
and bit-serial hardware architecture to enable low-
precision inference with little accuracy degradation.

•	ASIC Prototyping toward Commercial Deployment: 
In order to move the prototyping into commercial 
deployment, the FPGA will undergo ASIC prototyping 
migration to higher-integrated solutions, with less sil-
icon area and improved power-performance required 
by the automotive-grade reliability standards.

On-Chip Learning and Adaptation: The real-time learn-
ing and adaptation based on the on-chip incremental 
learning techniques will be enabled to make the sys-
tem robust in dynamic environments. Reduced weight 
backpropagation and memory-aware learning approach 
will be explored: learning a model with reduced budget 
requirements in real time.

The aim of these directions is to transform the exist-
ing FPGA-based platform into a scalable, smart, and 
dynamic setup that can be used to deploy in full auton-
omy of vehicle pipelines.

Conclusions

The whole scheme of implementing DNN on the recon-
figurable VLSI architecture in real-time object detection 
in self-driving vehicles has been presented in this paper 
and validated. The system enjoyed an extensive quanti-
zation, a model compression, hardware-conscious design 
considerations, balancing accuracy, inference speed, 
and power consumption. The co-architecture developed 
was also executed in a Xilinx ZCU102 FPGA and tested 
with real-world traffic settings to verify that it can 
effectively work within the network limits of embedded 
automotive systems.

The given methodology does not only prove the potential 
practical application of AI to deploying onto hardware 
with limited resources but precondition the possibility 
to produce future developments in the field of AI-VLSI 
integration, such as 3D perception, real-time learning, 
and ASIC migration to produce large volumes. This effort 
fulfills the increasing area of energy-efficient, safe-
ty-critical embedded intelligence within an autonomous 
system.
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