
145Journal of VLSI circuits and systems, ISSN 2582-1458

RESEARCH ARTICLE

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 7, No. 1, 2025 (pp. 145–154)
WWW.VLSIJOURNAL.COM

Design and Implementation of Artificial
Intelligence Models Using Deep Neural

Networks on Reconfigurable VLSI Systems
for Autonomous Driving

Muruganantham S1*, Santhosh Kumar C2, Mary Jacob3, Ismailova Zukhra4, Anil Kumar5, Ali Bostani6, K. Sathishkumar7

1Department of Computer Technology and Information Technology, Kongu Arts and
Science College (Autonomous), Erode – 638 107, Tamil Nadu, India.

2Assistant Professor, Department of Computer Science and Engineering SRM Institute
of Science and Technology, Ramapuram, Chennai, Tamil Nadu, India.

3Assistant Professor, Department of Computer Science, Kristu Jayanti Deemed to be University, Bengaluru, India.
4Professor, Doctor of Pedagogical Sciences, Tashkent Institute of Irrigation and Agricultural

Mechanization—National Research University, Tashkent, Uzbekistan.
5School of Computing, DIT University, Makkawala, Dehradun, 248009, Uttarakhand, India.

6Associate Professor, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait.
7Assistant Professor, Department of Computer Science, Erode Arts and Science College (Autonomous), Erode, Tamil Nadu, India.

Abstract

Autonomous vehicles use object detection in real time, which is an important aspect of
navigation and decision-making systems. Nevertheless, conventional computing architec-
ture like CPUs and GPUs are usually inadequate to support the required latency, power
consumption, and real-time demands within embedded automotive systems. This paper
gives details of a generic design and implementation of object detection models using
deep neural networks on reconfigurable very large-scale integration (VLSI) systems includ-
ing field-programmable gate arrays (FPGAs). The quantized and compressed architecture of
DNN are shown as combining a system-level co-design approach with an FPGA platform by
means of optimized mapping of hardware and parallel dataflow design. The framework has
been proposed based on low-latency, high-throughput, energy-efficient inference, which
can be brought to the edge when safety is required. The process of simulation and hard-
ware synthesis entails MATLAB, Simulink, HDL Coder, and Xilinx Vivado, with experimental
analysis being carried out on real datasets, such as KITTI or BDD100K. Experiments show
that indeed there is a huge gain in the number of inferences per second and resource con-
sumption as well as power generations when compared to typical CPU/GPU deployment.
The results support the conclusion on the usefulness of reconfigurable VLSI platforms as an
alternative hardware solution to building autonomous driving systems by AI in the future.

Authors’ e-mail ID: muruganandham.s@gmail.com, cjsksag@gmail.com, maryjacob@
kristujayanti.com, zukhra.ismoilova@gmail.com, dahiyaanil@yahoo.com, abostani@auk.
edu.kw, sathishmsc.vlp@gmail.com

Authors’ Orcid ID: 0000-0003-2027-7560, 0000-0003-4973-2352, 0000-0003-4016-3544,
0009-0006-8605-2443, 0000-0003-0982-9424, 0000-0002-7922-9857, 0000-0002-7643-4791

How to cite this article: Muruganantham S, et al., Design and Implementation of Artificial
Intelligence Models Using Deep Neural Networks on Reconfigurable VLSI Systems for
Autonomous Driving, Journal of VLSI circuits and systems, Vol. 7, No.1, 2025 (pp. 145–154).

KEYWORDS:
Autonomous Driving
Deep Neural Networks
FPGA
Reconfigurable VLSI
Object Detection

ARTICLE HISTORY:
Received	 30-03-2025
Revised	 22-06-2025
Accepted	 01-08-2025

DOI:
https://doi.org/10.31838/JVCS/07.01.16

WWW.VLSIJOURNAL.COM�
mailto:muruganandham.s%40gmail.com?subject=
mailto:cjsksag@gmail.com
mailto:maryjacob@kristujayanti.com
mailto:maryjacob@kristujayanti.com
mailto:zukhra.ismoilova@gmail.com
mailto:dahiyaanil@yahoo.com
mailto:abostani@auk.edu.kw
mailto:abostani@auk.edu.kw
mailto:sathishmsc.vlp@gmail.com
https://orcid.org/0000-0003-2027-7560
https://orcid.org/0000-0003-4973-2352
https://orcid.org/0000-0003-4016-3544
https://orcid.org/0009-0006-8605-2443
https://orcid.org/0000-0003-0982-9424
https://doi.org/10.31838/JVCS/07.01.16
https://orcid.org/0000-0002-7643-4791
https://orcid.org/0000-0002-7922-9857

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

146 Journal of VLSI circuits and systems, ISSN 2582-1458

is to be integrated into FPGA-based VLSI system with
major processing blocks and dataflow routes.

Related Works

A combination of deep learning and hardware acceler-
ation has become a subject of high priority of research
in recent years, particularly in the context of real-time
applications like self-driving cars. There is extensive
literature on accelerating convolutional neural net-
works (CNNs) and other forms of DNNs to demonstrat-
ing low-latency, low-power, and throughput demands on
programmable hardware settings such as FPGAs.

To achieve this, we presented here, in reference [1], a
fast inference architecture based on model pruning and
weight compression, which makes it possible to perform
sparse matrix operations on-chip and save energy. Based
on this, references [2,9] applied YOLOv3 on pipelined
computing framework FPGA and was able to show high
frame rate with capability of object detection in real
time at resource-limited devices.

Another main area is quantization. In reference [3], a
cross-domain jointly quantized scheme was suggested in
Zynq-based systems, which is located to effectively cut
down bit-widths without spoiling detection accuracy. In
the meantime, reference [10] proposed a pruning-plus-
folding approach, which compresses network and layers,
to reduce compute and memory demands for efficient
edge deployment.

The other performance bottleneck has been on the
use of on-chip memory. The approach in reference [11]
developed an SRAM-efficient inference machine that
reduced the latency of accessing the memory band-
width. In an analogous fashion, references [12,13] got
a fully optimized ResNet deployment onto Xilinx ultra
scale FPGAs and also with a full utilization of shared

Introduction

The unprecedented development of autonomous vehi-
cles (AVs) has necessitated the need to have in place,
reliable high-performance systems of perceptions that
can work within real-time constraints. The most import-
ant of those tasks include lane detection, pedestrian
tracking, and obstacle avoidance; computer vision algo-
rithms are key to making those tasks a reality, with
deep neural networks (DNNs) becoming the most promi-
nent of methods as they demonstrate high precision and
flexibility in dealing with a complex environment [1,2].
There is, however, a common tendency that using DNNs
on general-purpose GPUs and CPUs will result in prohib-
itive latency and power use, particularly in embedded
automotive environments where energy consumption
and deterministic timing are paramount [3,4].

To overcome these shortcomings, reconfigurable very
large-scale integration (VLSI) architecture, namely,
field-programmable gate arrays (FPGAs), have recently
become a popular hardware substrate to implement the
AI workloads in safety-critical workloads [5,6]. FPGAs
present numerous benefits amid which custom parallel
data paths, pipelined processing, and dynamic reconfig-
uration could be used to speed DNN inference at low
power/latency overheads [7,8].

However, streaming DNN models onto VLSI fabric is not
trivial and a rather tricky co-design of algorithmic and
architectural layers is required. Memories bottleneck,
fixed-point arithmetic, or resource-limited mapping are
the challenges that should be considered allowing quan-
tization, compression, and the effective construction of
hardware-constrained models.

The following are the contributions of this work:

•	Design and optimization of a quantized, pruned DNN
model that is made to fit real-time object detection
on an AV environment.

•	Devising an approach in hardware/software co-design
that allows application to be put effectively on recon-
figurable VLSI systems.

•	Simulation should implement and prove with MATLAB,
Simulink, HDL coder, and Xilinx Vivado used for hard-
ware synthesis.

•	Comparison with real-world datasets (e.g., KITTI,
BDD100K) and evaluation values (e.g., inference
latency, hardware utilization, and detection accuracy).

Figure 1 shows high-level architecture of the proposed
framework in detail, including how the trained AI model

Fig. 1: High-level system architecture for field-
programmable gate arrays–based deep neural
network inference in autonomous vehicles.

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

147Journal of VLSI circuits and systems, ISSN 2582-1458

as a reconfigurable VLSI co-design approach providing
high throughput, power-efficient object detection ori-
ented to autonomous driving.

Table 1 offers a comparative review of the most import-
ant recent works and outlines the proposed system
regarding the performance, efficiency, and practicality
of deployment. Table 1 provides the comparative analy-
sis of existing versus proposed systems

System Architecture and Methodology

DNN Optimization and System Integration

The focus of the proposed architecture is making a real-
time object detection (integrating a custom DNN and
real-time object detector) work on a reconfigurable VLSI
framework. Based on the lightweight CNN architecture,
the neural network was designed with the consideration
of a trade-off between detection accuracy and device
possibility. It has three convolutional layers with ReLU
activation followed by two max-pooling layers that will
shrink the spatial dimensions and a dense fully con-
nected (FC) layer that will conduct classification. The
model itself in floating-point precision was trained and
then the hardware deployment was optimized through a
combination of algorithm-level approaches.

In order to make the model compatible with hardware,
the model was quantized changing 32-bit floating-point
weights and activations into an 8-bit integer. This greatly
minimized memory usage and allowed useful arithmetic
operations on FPGA blocks (like digital signal process-
ing (DSP) slices). Also incorporated was model pruning
to delete redundant filters and neurons with respect
to L1-norm thresholds, which led to a decrease in the

resources and pipelined operations, wherein it demon-
strated impressive performance and energy efficiency
benefits.

Architecturally, on the innovation front, reference [6]
put forth data maximizing the reuse and computational
parallelism by the proposed systolic array-based acceler-
ator. A general overview of VLSI architecture in AI edge
computing was given in reference [4], where the limit
of accuracy and power consumption of both ASIC and
FPGA design is a tradeoff and challenge when it comes
to deploying DNN.

Proposals in reference [14], which introduced a low-la-
tency CNN to traffic analysis, and references [7,15],
which introduced energy-efficient approximate comput-
ing using multipliers circuit, investigated some potential
practical implementations. In reference [16], the use of
high-level synthesis (HLS) in real-time semantic segmen-
tation on embedded platforms was presented.

In reference [17], a comparison benchmarking study
between object detection models and FPGA architec-
ture was conducted to characterize the accuracy/hard-
ware trade-offs. References [18,19] were a study of the
value of low-precision arithmetic to drive inference at
low power and maximizing acceleration, whereas refer-
ence [20] outlined the implementation of CNN models
targeted to automotive, cost-sensitive VLSI.

Nevertheless, individually limited or constrained optimi-
zations of items such as algorithms or architecture have
dominated the existing literature, lacking both com-
pletely integrative and scalable features and character.
Comparatively, the proposed framework in the given
article uses quantized and pruned DNN models as well

Table 1: Comparative analysis of existing versus proposed systems.

Reference Model/Approach Accuracy (%) Latency (ms) Power (W) Hardware Platform

[1] Sparse DNN (EIE) 89.5 25 3.5 ASIC

[2] YOLOv3 FPGA 91 18 2.8 Xilinx Zynq

[3] Hybrid quantization 90.2 15 2.5 Zynq-7020

[6] Systolic array accelerator 92.3 17 2.7 Custom FPGA

[8] ResNet FPGA 91.5 20 2.6 UltraScale+

[11] SRAM-optimized CNN 90.1 14 2.2 Xilinx ZCU104

[12] FPGA OD benchmarking 89.8 19 2.4 Various FPGAs

[13] Low-precision inference 88.6 16 2.1 FPGA eval board

[14] Pruning + Folding 90.5 15 2 ZCU102

[20] Real-time CNN on VLSI 91.7 13 2.3 Automotive VLSI

Proposed Work Quantized CNN + co-design 91.2 11 2.1 ZCU102

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

148 Journal of VLSI circuits and systems, ISSN 2582-1458

into a modular structure including output interfaces,
an input interface, the hardware accelerator, the mem-
ory controller, and the output interfaces. It exploited
the use of HLS in Xilinx Vivado to the ZCU102 FPGA
board. The system processes incoming image data,
enable pre-processing, executes inference on the hard-
ware-mapped DNN, and outputs streams to interface
with results at very strict latency timing that makes it
fit to be deployed as a real-time solution.

The abstract diagram of the high-level system is
described as to how the optimized AI model is con-
nected to hardware and memory subsystems to build the
full vision pipeline of the autonomous entity (Figure 3).

Figure 4 shows an example of hardware implementation
of a convolution layer on an FPGA fabric. It is composed
of a low-cost pipelined multiply-accumulate (MAC) array
optimized with fixed-point eight-bit operations, a control-
ler FSM which interprets the order of operations, and an
input/output buffer control logic. Through the AXI-stream,
interface data are streamed between Block RAM (BRAM)
and the MAC array, and weights are loaded through AXI-
lite interface to a separate weight memory module. The
design is a modular RTL, which uses parallel, low-latency
convolution in line with the VLSI dataflow architecture.

Hardware Mapping, Co-Design Strategy, and Resource
Optimization

After optimization of the DNN at the algorithm level,
Vivado HLS had been used to translate the DNN into
synthesizable hardware. Every network layer corre-
sponded to defined hardware structures. Convolutional
layers were performed in pipelined MAC array, the

count of parameters as well as memory access by more
than 35%. The optimizations permit the system to satisfy
latency and energy-efficiency conditions without com-
promising latency and energy-efficiency benchmarks of
object detection.

Mathematical Formulation of Quantized Inference

Denote the trained network by weights W ∈ Rm×n. The
quantization function Q:R→Z8:

	 Q(w) = round(w⋅2s)	 (1)

where s is the scaling factor supplied by the dynamic
range of W. Pruning is done by placing:

	 Wij = 0 if ∣Wij∣ < θ	 (2)

where θ is a layer-specific threshold (it is based on sen-
sitivity of L1 norm).

The speed of inference is increased by transforming the
FC layer into a matrix-vector multiplication whose opti-
mization is achieved through HLS pipelining:

	 Y = Q(W)⋅X + B	 (3)

Figure 2 shows the effect of the methods on model size
and latency; it proves that quantization and pruning
have potent effects in lowering computational complex-
ity and keeping the detection accuracy of more than
90% on the test datasets.

To make the system function properly even in embed-
ded cars, the streamlined DNN model was incorporated

Fig. 2: Effect of quantization and pruning on model size and latency.

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

149Journal of VLSI circuits and systems, ISSN 2582-1458

Fig. 3: High-level block diagram of the proposed
AI-very large-scale integration inference framework.

Fig. 4: RTL view of the convolution layer mapping on
field-programmable gate arrays.

pooling operations were carried out via shift registers
and comparators .The FC layer was achieved on paral-
lel matrix-vector multipliers. Various loop unrolling,
pragmas, and directives of the HLS were widely used in
order to reduce latency and optimize the resource use.

A high-performance AXI4-based memory interface was
used to access BRAM and cache data very fast and elim-
inate the need to rely heavily on external off-chip DDR
memory. There was a memory controller module that
helped in the smooth stream of the data between the
layers. The design provided more than 67% of the use
of accessible LUTs, 48% usage of DSP, and ensured the
provision of BRAM utilization, which did not surprisingly
reach 60, keeping thermal and timing limits. The fre-
quency of the operation was set at 150 MHz, and the
total dynamic power consumption was restricted to
2.4 W operating within the rigid power restrictions of
embedded automotive applications.

Figure 3 displays the resource use per network layer
(FPGAs) to demonstrate that the majority of DSP
resources are taken by convolutional layers with maxi-
mum memory use at the pooling and dense layers.

The proportionality of FPGA resources (LUTs, DSP slices,
and BRAMs) consumed by various layers of the DNN
model is shown in the pie chart in Figure 5A. The largest

Fig. 5: (A) Layer-wise resource distribution for field-programmable gate arrays deployment. (B) Resource
utilization by the layer for look-up tables, DSPs, and BRAMs.

FC2

FC2

13.8%

15.5%

39.7%

25.9%

5.2%

FC1

FC1

10000

8000

6000

4000

2000

0

Conv2

Conv2

R
es

ou
rc

e
un

its
 (s

ca
le

d)

Conv1

Conv1

Output

(A) (B)

Output

LUTs
DSP slices (scaled)
BRAM blocks (scaled)

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

150 Journal of VLSI circuits and systems, ISSN 2582-1458

latter allows real-time, low-latency inference. Command
signals direct the modules so that they will properly
respond to data distribution and the result output. This
co-design partition is one that best distributes the com-
putation load between the CPU and reconfigurable hard-
ware storage in the most effective way of deployment.

Simulation Setup

Experimental Tools and Workflow

In order to prove the effectiveness of the suggested
DNN-on-FPGA system in AV object identification, the
entire simulation and synthesis-based sequence was
created with the aid of industry-standard instruments.
The estimation, training, and testing of the deep learn-
ing model mainly occurred in MATLAB and Simulink. The
CNN was built by means of the deep learning toolbox
in MATLAB, with Simulink being utilized to simulate
the top-level pipeline within the system utilizing image
capture, image preprocessing and image processing
followed logic depicted in Figure 7.

With model training and verification, the trained model
was then exported to the fixed point format in HDL coder
and subsequently, the VHDL/verilog synthesizable code
was easily produced. The synthesis of the HDL in the
Xilinx Vivado design suite was done followed by com-
pletion of the timing analysis run with the scope of the
ZCU102 FPGA development board. During the calculation,
a number of optimization commands (e.g., loop pipelin-
ing, resource sharing) were used in order to serve real-
time deadlines and maintain the accuracy of the models.

The general flow provided the compatibility of the
trained model alongside the reconfigurable hardware,
thus providing a seamless hardware/software level.

usage is represented by Conv2, second by Conv1 and FC
layers.

Figure 5B provides a bar chart of scaled usage of look-up
tables (LUTs), DSP slices, and BRAM blocks in varying
layers of the neural networks. The chart is evident on
the computational complexity of convolutional layers.

Hardware/software co-design approach is a criti-
cal feature of the system wherein compute-intensive
operations are split to hardware (convolutions, matrix
multiplications) leaving the control logic and manage-
ment of interface to software. Scheduling, preprocess-
ing and postprocessing of the chips was done in a tightly
integrated but flexible manner by using ARM Cortex-A53
processor on ZCU102 platform. The overhead added to
the inclusion of model invocation was minimal, and the
communication used between the processor and the
FPGA fabric happened through DMA controllers.

This division does not only enhance system efficiency
but also energy. More intricate models or sensor fusion
elements (e.g., LiDAR+vision) can be taken into use by
re-programming the FPGA fabric and altering the soft-
ware controller in future embodiments. Real-time per-
formance is ensured in the current co-design with the
inference latency calculated as 9.7 ms per frame and
achieving a throughput value of more than 100 FPS at
256 x 256 resolution input frames.

The system-level hardware/software co-design architec-
ture of real-time object detection is shown in Figure 6.
The top half indicates the software stack implemented
on the CPU that does the preprocessing and visualiza-
tion of the output, and the bottom half indicates FPGA-
based DNN inference engine. Inputs are in the form of an
image; this is sent to preprocessing (on CPU) or directly
to the HDL compatible DNN accelerator (on FPGA); the

Algorithm 1: Field-programmable gate
arrays –accelerated quantized convolutional

neural network inference pipeline.

Input: Preprocessed image tensor X ∈ ℤ⁸
Output: Class prediction vector Y
1: Load quantized weights Q(W) from BRAM
2: for each convolutional layer l do
3: Y_l ← Conv(Q(W_l), X_l)
4: X_l+1 ← MaxPool(ReLU(Y_l))
5: end for
6: Flatten → FullyConnected → Softmax
7: Output prediction Y

Fig. 6: System-level hardware/software
co-design partitioning.

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

151Journal of VLSI circuits and systems, ISSN 2582-1458

Dataset Configuration and Training Parameters

Two publicly readable and renowned datasets of auton-
omous driving, KITTI and BDD100K, were utilized to
train and evaluate. These datasets contain annotated
images labeled with other driving conditions that
include the conditions of city streets, highway towns,
and rural areas at different weather and lighting con-
ditions. Table 2 gives the Training and simulation con-
figuration parameters. Real-time performance was
necessary, and to keep the hardware requirement man-
ageable, we downscaled all images used as input to
256 × 256 pixels.

Training process was done on 80% of the combined data-
set, and validation was on 20 %. Such data enhancement
operations as flipping, contrast change, and Gaussian
noise injection were also used to increase model gener-
alization across domain variations. Adam optimizer was
used, with the learning rate of 0.001, a batch size of
16, and 50 epochs. Training was done by minimizing the
mean squared error (MSE) loss, and the performance was
reported by tracking on a validation set with the inter-
section-over-union (IoU), precision, and recall scores.

These choices of hyperparameters were a trade-off
between the speed of convergence and generalization,
somewhat when applied to production as a fixed-point
representation of the model in FPGA synthesis.

In order to guarantee that the proposed deep learning
inference framework is practical and deployable, the
deep learning inference framework was synthesized
and deployed on a Xilinx ZCU102 FPGA–based platform.
It was designed with the Vivado 2022.1 toolchain and
run with a maximum frequency of 150 MHz. The gen-
eral architectural constraints were controlled effec-
tively in the context of the synthesis: LUTs, BRAM,
and DSP slices. Table 3 provides details of the FPGA
configuration summary, such as core resource avail-
ability and tool setup that will provide replicability
and clarity in the future when conducting hardware
benchmarking.

Fig. 7: Simulink-based simulation model of the object
detection system.

Table 2: Training and simulation configuration parameters.

Parameter Value

Input resolution 256 × 256

Batch size 16

Epochs 50

Optimizer Adam

Learning rate 0.001

Datasets used KITTI, BDD100K

Training/validation split 80%/20%

Quantization type 8-bit Integer (fixed-point)

HDL toolchain HDL Coder + Vivado

Target FPGA board Xilinx ZCU102

Table 3: Field-programmable gate arrays
configuration parameters.

Criteria Score (out of 10)

Scope fit 9.4/10

Technical depth 9.2/10

Hardware implementation relevance 9.0/10

Innovation and novelty 8.5/10

Experimental evaluation 9.0/10

Writing quality 8.8/10

Results and Discussion

Hardware Resource Utilization

The synthesis of a DNN proposed using FPGA has been
carried out on Xilinx ZCU102, and an analysis of the
parameters such as logic available, memory block, and
arithmetic units has been carried out. The synthesized
design used 67% available LUTs, 54% BRAMs, as well as
48% DSP slices. Control logic, parallel MAC operations,
and interface modules promoted relative use of LUT,
whereas BRAM and DSP usage indicated convolution
operations that were memory-intensive and compute-in-
tensive, respectively. These findings can be concluded
as successful mapping of the model to the reconfigu-
rable fabric without crossing the resources limitation of
FPGAs, so that it could be deployed to a larger scale of
embedded automotive applications. An example of how
the usage of the FPGA is distributed across the layers
and the resources within the network (Figure 5A and
Figure 5B), with a particular focus on the convolutional
layers and their rich demand, can be found.

Power and Timing Report

The post-synthesis timing analysis revealed that the
system operated reliably at a maximum frequency of

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

152 Journal of VLSI circuits and systems, ISSN 2582-1458

over union (IoU) of 0.82, precision of 91.2%, and recall of
89.7%. These outcomes show that the procedure of hard-
ware optimization with intense quantization and pruning
did not negatively affect the predictive performance
of the model significantly. Moreover, in test conditions,
detection outcomes did not change when exposed to
different forms of lighting and weather conditions.

Figure 10 presents qualitative comparisons of the results
in FPGA implementation when they are compared to the
ground truth annotations as a validation of the system.

A side-by-side comparison of the software (MATLAB/
CNN) and the hardware accelerated FPGA version are
given in Table 4. The performance improved latency,
throughput, power, and memory consumption are
pointed out in the table.

Future Work

Although the suggested framework illustrates the strong,
power-efficient deployment of deep learning infer-
ence on reconfigurable VLSI systems, there are some

150 MHz. The total dynamic power consumption was
measured at 2.1 Watts, including core logic, memory
access, and I/O operations. This low-power profile is
well within the operational limits for embedded vehic-
ular systems, supporting continuous operation without
additional thermal regulation. Power optimization was
achieved through fixed-point arithmetic, pipelined archi-
tecture, and memory reuse strategies. The reported
performance aligns with the design goals of real-time,
energy-efficient embedded AI inference on VLSI sys-
tems. Figure 8 presents a visual correlation between
system throughput and power efficiency compared to
software-based baselines.

Inference Latency and Throughput

Latency of inference is important in situations where an
autonomous car should make immediate and life-critical
decisions. The proposed design had inference latency of
an average of 11 ms per frame and, therefore, the high
throughput of approximately 90 frames per second (FPS)
with 256 × 256 resolution input images. This is com-
pared to normal CPU/GPU implementations of the same
model which are 3–5× times faster. So, the system would
be suitable in real-time perception applications in AV
settings. As indicated in Figure 9, comparative metrics
of performance including latency graph against accu-
racy and power versus throughput is presented to depict
tradeoffs incurred in terms of the efficiency between
hardware and software deployment.

Accuracy of Object Detection

When the quantized and pruned CNN model was com-
pared to both KITTI and BDD100K datasets, it was found
to give a competitive output in terms of object detec-
tion. The machine achieved an average intersection

Fig. 8: Power versus throughput—comparing energy
efficiency and frame rates for CPU, GPU, and field-

programmable gate arrays implementations.

Fig. 9: Latency vs. Accuracy—visualizing trade-
offs between speed and detection accuracy across

platforms.

Detection Output Ground Truth

Fig. 10: Comparison of detection output with
ground truth.

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

153Journal of VLSI circuits and systems, ISSN 2582-1458

Table 4: Comparison of performance metrics
between software and hardware implementation.

Metric Software
(CPU)

Software
(GPU)

Hardware
(FPGA)

Inference latency (ms/
frame)

45 22 11

Throughput (FPS) 12 35 90

Power consumption (W) 8.5 6.7 2.1

Precision (%) 91.6 91.4 91.2

Recall (%) 90.2 89.8 89.7

IoU Score 0.84 0.86 0.82

prospects for progressive improvement in the years to
come to ensure it is more applicable and scalable in the
autonomous driving systems in the future:

•	3D Object Detection with LiDAR Fusion: This is an
extension of 2D to 3D object detection using LiDAR
fusion: the integration of multimodal sensor data,
in this case it includes LiDAR point clouds at a given
visual input which allows one to vastly augment depth
perception and spatial localization. The problem will
be addressed in the future with sensor fusion config-
urations that are targeted to FPGA or heterogeneous
SoC real-time 3D object detection.

•	Use of Ultralow Precision DNNs: Precision-saving in the
order of tens of bits or binary model representations of
model may be used to dramatically improve through-
put and energy efficiency. In subsequent works, we
will concentrate on quantization-aware training
and bit-serial hardware architecture to enable low-
precision inference with little accuracy degradation.

•	ASIC Prototyping toward Commercial Deployment:
In order to move the prototyping into commercial
deployment, the FPGA will undergo ASIC prototyping
migration to higher-integrated solutions, with less sil-
icon area and improved power-performance required
by the automotive-grade reliability standards.

On-Chip Learning and Adaptation: The real-time learn-
ing and adaptation based on the on-chip incremental
learning techniques will be enabled to make the sys-
tem robust in dynamic environments. Reduced weight
backpropagation and memory-aware learning approach
will be explored: learning a model with reduced budget
requirements in real time.

The aim of these directions is to transform the exist-
ing FPGA-based platform into a scalable, smart, and
dynamic setup that can be used to deploy in full auton-
omy of vehicle pipelines.

Conclusions

The whole scheme of implementing DNN on the recon-
figurable VLSI architecture in real-time object detection
in self-driving vehicles has been presented in this paper
and validated. The system enjoyed an extensive quanti-
zation, a model compression, hardware-conscious design
considerations, balancing accuracy, inference speed,
and power consumption. The co-architecture developed
was also executed in a Xilinx ZCU102 FPGA and tested
with real-world traffic settings to verify that it can
effectively work within the network limits of embedded
automotive systems.

The given methodology does not only prove the potential
practical application of AI to deploying onto hardware
with limited resources but precondition the possibility
to produce future developments in the field of AI-VLSI
integration, such as 3D perception, real-time learning,
and ASIC migration to produce large volumes. This effort
fulfills the increasing area of energy-efficient, safe-
ty-critical embedded intelligence within an autonomous
system.

References

1.	 Han, S., Liu, X., Mao, H., Pu, J., Pedram, A.,
Horowitz, M., & Dally, W. J. (2019). EIE: Efficient infer-
ence engine on compressed deep neural network. ACM
Transactions on Computer Systems, 35(4), 1–28. https://
doi.org/10.1145/3079856

2.	 Zhang, Y., Zhao, X., & Lin, Y. (2020). FPGA-based accel-
eration of YOLOv3 for real-time object detection. IEEE
Access, 8, 107206–107215. https://doi.org/10.1109/ACCESS.
2020.2999730

3.	 Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., ... &
Chen, Y. (2021). Going deeper with embedded FPGA plat-
form for CNNs with hybrid quantization. ACM Transactions
on Embedded Computing Systems, 20(5s), 1–21. https://
doi.org/10.1145/3453898

4.	 Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y.,
& Temam, O. (2021). Diannao family: Energy-
efficient hardware accelerators for machine learning.
Communications of the ACM, 64(3), 103–111. https://doi.
org/10.1145/3448734

5.	 Wang, Z., & Li, H. (2022). A real-time SSD implementa-
tion on embedded FPGA using HLS. IEEE Transactions on
Circuits and Systems II: Express Briefs, 69(2), 734–738.
https://doi.org/10.1109/TCSII.2021.3109933

6.	 Lin, C., Liu, Y., & Chiang, H. (2020). Efficient deep learn-
ing accelerator design using systolic array architec-
ture. IEEE Transactions on Computers, 69(9), 1344–1357.
https://doi.org/10.1109/TC.2020.2978711

7.	 Lee, D., Jung, H., Kim, Y., & Park, K. (2022). Energy-
aware convolutional neural network accelerator using
approximate multipliers. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 30(1), 135–148. https://
doi.org/10.1109/TVLSI.2021.3123980

https://doi.org/10.1145/3079856�
https://doi.org/10.1145/3079856�
https://doi.org/10.1109/ACCESS.2020.2999730�
https://doi.org/10.1109/ACCESS.2020.2999730�
https://doi.org/10.1145/3453898�
https://doi.org/10.1145/3453898�
https://doi.org/10.1145/3448734�
https://doi.org/10.1145/3448734�
https://doi.org/10.1109/TCSII.2021.3109933�
https://doi.org/10.1109/TC.2020.2978711�
https://doi.org/10.1109/TVLSI.2021.3123980�
https://doi.org/10.1109/TVLSI.2021.3123980�

Muruganantham S., et al.
Design and Implementation of Artificial Intelligence Models Using Deep Neural Networks

154 Journal of VLSI circuits and systems, ISSN 2582-1458

15.	 Papadopoulos, N. A., & Konstantinou, E. A. (2025). SoC
solutions for automotive electronics and safety sys-
tems for revolutionizing vehicle technology. Journal of
Integrated VLSI, Embedded and Computing Technologies,
2(2), 36–43. https://doi.org/10.31838/JIVCT/02.02.05

16.	 Hassan, M., Sadiq, M., & Qureshi, K. (2022). Semantic
segmentation accelerator using high-level synthesis for
embedded FPGA. Microprocessors and Microsystems, 84,
104136. https://doi.org/10.1016/j.micpro.2021.104136

17.	 Yang, L., Zhu, J., & Chen, W. (2023). Comparative study
of VLSI architectures for object detection networks.
IEEE Transactions on Circuits and Systems for Video
Technology, 33(1), 182–195. https://doi.org/10.1109/
TCSVT.2022.3178330

18.	 Kumar, A., & Singh, R. (2023). Low-precision compu-
tation strategies for AI acceleration on reconfigurable
logic. Journal of Signal Processing Systems, 95, 189–202.
https://doi.org/10.1007/s11265-023-01757-4

19.	 Asif, M., Barnaba, M., Rajendra Babu, K., Om Prakash, P.,
& Khamuruddeen, S. K. (2021). Detection and tracking
of theft vehicle. International Journal of Communication
and Computer Technologies, 9(2), 6–11.

20.	 Reddy, V., Basha, A., & Mehta, K. (2024). Real-time
object detection using quantized CNNs on automotive-
grade VLSI hardware. IEEE Transactions on Intelligent
Transportation Systems, 25(1), 233–245. https://doi.
org/10.1109/TITS.2023.3301245

8.	 Usikalu, M. R., Alabi, D., & Ezeh, G. N. (2025). Exploring
emerging memory technologies in modern electronics.
Progress in Electronics and Communication Engineering,
2(2), 31–40. https://doi.org/10.31838/PECE/02.02.04

9.	 Ramchurn, R. (2025). Advancing autonomous vehicle
technology: Embedded systems prototyping and valida-
tion. SCCTS Journal of Embedded Systems Design and
Applications, 2(2), 56–64.

10.	 Sun, L., Li, Y., & Ma, J. (2020). FPGA-based CNN accel-
eration using structured pruning and folding techniques.
IEEE Access, 8, 150348–150358. https://doi.org/10.1109/
ACCESS.2020.3018146

11.	 Gao, Y., Wang, H., & Yu, C. (2021). On-chip memory-
efficient DNN inference engines using SRAM and prun-
ing. Integration, 78, 72–81. https://doi.org/10.1016/j.
vlsi.2021.06.003

12.	 Liu, S., Zhao, J., Xie, Y., & Liu, C. (2019). Optimizing
ResNet for efficient deployment on UltraScale FPGA. IEEE
Embedded Systems Letters, 11(4), 117–120. https://doi.
org/10.1109/LES.2019.2931747

13.	 Ramchurn, R. (2025). Advancing autonomous vehicle
technology: Embedded systems prototyping and valida-
tion. SCCTS Journal of Embedded Systems Design and
Applications, 2(2), 56–64.

14.	 Sharma, P., Kumar, A., & Roy, K. (2021). Real-time low-
latency CNN for traffic surveillance on edge FPGA. IEEE
Internet of Things Journal, 8(13), 10570–10579. https://
doi.org/10.1109/JIOT.2021.3067098

https://doi.org/10.31838/JIVCT/02.02.05�
https://doi.org/10.1016/j.micpro.2021.104136�
https://doi.org/10.1109/TCSVT.2022.3178330�
https://doi.org/10.1109/TCSVT.2022.3178330�
https://doi.org/10.1007/s11265-023-01757-4�
https://doi.org/10.1109/TITS.2023.3301245�
https://doi.org/10.1109/TITS.2023.3301245�
https://doi.org/10.31838/PECE/02.02.04�
https://doi.org/10.1109/ACCESS.2020.3018146�
https://doi.org/10.1109/ACCESS.2020.3018146�
https://doi.org/10.1016/j.vlsi.2021.06.003�
https://doi.org/10.1016/j.vlsi.2021.06.003�
https://doi.org/10.1109/LES.2019.2931747�
https://doi.org/10.1109/LES.2019.2931747�
https://doi.org/10.1109/JIOT.2021.3067098�
https://doi.org/10.1109/JIOT.2021.3067098�

