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Abstract 

This research presents a self‐calibrating mixed‐signal analog front-end (AFE) for multi-
modal biomedical sensing, implemented in a 180 nm CMOS process. A capacitive cross-cou-
pled common-gate Class-E amplifier with adaptive biasing sustains linearity and gain across 
amplitude and temperature swings. A low-noise instrumentation amplifier and a program-
mable gain stage use digitally controlled offset and noise-aware bias tuning to support ECG, 
EMG, and temperature channels. A hybrid calibration engine comprising a 10-bit SAR ADC 
and on-chip finite-state machine enables closed-loop bias and offset compensation based 
on real-time signal statistics. Multiphase, charge-controlled clocking ensures inter-channel 
synchronization with minimal jitter, while active RC biquad filters with FDNRs enhance 
common-mode rejection and out-of-band suppression. Post‐layout simulations demonstrate 
3.2 μVrms input-referred noise, 92 dB dynamic range, and 1.2 μW/channel power consump-
tion, with robust operation across process–voltage–temperature variations. These results 
validate a reconfigurable, ultra-low-power AFE suited for next‐generation IoT-enabled bio-
medical SoCs. 
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Introduction 

Wearable and implantable biomedical systems demand 
analog front-ends (AFEs) that combine high input sen-
sitivity, wide dynamic range, and low-power operation 
while remaining robust to electrode impedance varia-
tions and environmental noise. Conventional AFEs trade 
off noise performance against power or area, and typi-
cally rely on static biasing or one-time calibration, which 
is insufficient for long-term monitoring where drift and 
mismatch are significant.[1],[2]

Recent works have demonstrated improvements in noise 
efficiency and power reduction, achieving input-re-
ferred noise in the 2–5 µVrms range,[3]–[5] or programma-
ble gain and bandwidth for multimodal acquisition.[6]  
However, most prior AFEs lack continuous closed-loop 
calibration, and several still require manual trimming 
or external references to suppress drift.[7],[8] Moreover, 
time-interleaved converters improve throughput but 
often suffer from phase skew and jitter that degrade the 
overall dynamic range.[9]
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measurements, followed by prototype bench testing on 
wire-bonded or packaged chips to assess noise, gain, 
offset, and calibration performance. Finally, documen-
tation of measurement automation, probe station proce-
dures, and test-chip roadmaps streamline the transition 
from design to silicon validation and publication. The 
robustness of this flow is illustrated in Figure 1, where 
Monte Carlo pass-rate across PVT corners (SS/−40°C, 
TT/27°C, FF/+85°C) confirms high yield at nominal condi-
tions with only modest degradation at extremes.

Pre-Silicon Verification, Parasitic Extraction (PEX), 
and Verification Environment Architecture

The pre-silicon sign-off process is driven by a hierarchi-
cal EDA flow that inputs both the GDSII layout and sche-
matic netlist into DRC/LVS engines, followed by PEX and 
merged SPICE simulations in Figure 2. Both the GDSII 
layout and schematic netlist are input into the DRC/
LVS verification engines. Once the design passes DRC 
and LVS checks, the clean GDSII file is passed to the PEX 
tool. The resulting Standard Parasitic Exchange Format 
(SPEF) file is then merged with the behavioral SPICE 
netlist.[14]. A script-driven simulator conducts a suite of 
analyses DC, AC, noise, and transient under nominal and 
corner PVT conditions. Post-simulation, waveform data 
are statistically processed to extract performance met-
rics and compute design yield.

Layout Verification and Post-Layout Simulation

Design rule check (DRC) ensures compliance with 
foundry constraints (minimum feature sizes, metal den-
sity, and antenna rules), while layout-versus-schematic 
(LVS) confirms equivalence between the extracted net-
list and schematic, that is, netlistGDSII ≡ netlistSCH. Once 
DRC and LVS pass, PEX is performed to model intercon-
nect resistance and capacitance. Segment resistance is 

To address these limitations, this paper presents a 
self-calibrating mixed-signal AFE in 180 nm CMOS that 
integrates an adaptive Class-E current-controlled gain 
amplifier, FDNR-based active-RC filters, and a hybrid SAR 
ADC with FSM-driven calibration. The design achieves 
3.4 µVrms input-referred noise, 90 dB dynamic range, 
105 dB CMRR, >80 dB PSRR, and 1.25 µW per-channel 
power. Continuous calibration maintains offset below 
20 µV and suppresses long-term drift across electrode 
impedance variation. These results demonstrate robust 
circuit-level modeling suitable for integration into porta-
ble biomedical devices.[10]

Related Work 

Ultra-low-power AFE designs have achieved ECG front-
end operation below 100 nW through aggressive voltage 
scaling,[11] while OTA-C notch filters demonstrate >60 dB 
power-line interference suppression without degrading 
noise.[12] For EEG and neural recording, high-order notch 
and low-pass filter architectures extend artifact atten-
uation.[13] Digital calibration acceleration using opti-
mized arithmetic blocks has been proposed to reduce 
latency,[14] and machine-learning-based modeling assists 
bias tuning under process–voltage–temperature (PVT) 
variations.[15]–[19] Closed-loop adaptation circuits orig-
inally developed for gas sensors illustrate the broader 
applicability of self-reconstruction techniques in  
AFEs.[20]–[23]

Low-power microcontrollers tailored for wearable health 
platforms emphasize real-time analog parameter con-
trol,[17],[24–28] and advanced instrumentation amplifier 
layouts reduce input-referred noise below 4 µVrms at 
1.8 V.[29] Dynamic biasing in scaled technologies such as 
22 nm FDSOI preserves linearity in neural arrays,[30] while 
multimodal adaptation strategies have been explored 
in integrated sensing frameworks.[31] In spite of these 
advances, no reported AFE consolidates continuous 
bias adaptation, closed-loop offset calibration, FDNR-
enhanced filtering, and sub-100 ps multiphase synchro-
nization across ECG, EMG, and temperature channels 
in a single sub-µW SoC. The proposed design addresses 
this gap with an adaptive Class-E biasing stage, hybrid 
SAR-FSM calibration engine, and charge-controlled mul-
tiphase clock generator implemented in 180 nm CMOS.

Pre-Silicon Verification And Testing Roadmap

The pre-silicon verification flow first ensures layout–
schematic matching with parasitic extraction for realis-
tic simulations. A dedicated PCB test setup with fixtures 
and instrumentation then enables accurate on-chip 
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Fig. 1: Monte Carlo pass-rate across process–voltage–
temperature corners (SS, TT, FF).
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and 10 µF tantalum) are placed within 2 mm of supply 
pins for high- and low-frequency filtering. Controlled-
impedance 50 Ω microstrip lines route high-speed dig-
ital and clock signals to minimize reflections. The PCB 
accommodates both packaged dies and wire-bonded bare 
dies via spring probes or solder-pad footprints. Shielded 
enclosures around the AFE further mitigate EMI, ensuring 
clean analog acquisition (Figure 3).

To evaluate EMI resilience, tests per IEC 61000-4-3 revealed 
a 3 dB SNDR drop and +0.2 µVrms noise rise under a 1 V/m 
radiated field (80 MHz–1 GHz). Power-rail interference had 
minimal impact because of robust decoupling. For added 
suppression, on-SoC capacitors (0.1 µF ceramic, 1 µF MIM) 
at bias and analog nodes are advised, along with opti-
mized ground routing and balanced differential layout to 
reduce common-mode coupling.

Electrode Impedance Emulation 

A realistic electrode interface is emulated using a bio-
physical equivalent circuit defined as

	 ( ) 301
, e s ct

dl

Z s R R
sC

  
 

= +  
 

 	 (3)

given by Rseg = ρL/(Wt) while capacitance includes intrin-
sic and coupling effects, Cseg = Cox  LW + ∑Ccouple, with 
PEX exporting distributed RC networks in SPEF format 
for SPICE. The s-domain impedance of a subdivided line 
is approximated as (See. Equation 1):
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capturing delay and signal integrity.

Using the parasitic-aware netlist, SPICE simulations 
are run: DC analysis verifies bias points (e.g., IBIAS), AC 
extracts gain and poles (fP1,fP2), noise analysis computes 

input-referred noise ( )2
,in ,n n ie e= ∑ , and transient 

analysis applies a 1 kHz, 10 mVpp sine to measure total 

harmonic distortion (THD), defined as (See. Equation 2):
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Statistical robustness is evaluated via PVT corner sweeps 
(SS/TT/FF across −40°C to 85°C, 0.9×–1.1×VDD, and 
Monte Carlo analysis (100 runs, with Vth=25 mV, σβ/β = 
2%). Algorithm 1 automates statistical yield estimation 
by computing pass rates for key specs (gain, noise, and 
offset) across 100 Monte Carlo runs per PVT corner.

Measurement Environment Design 

Test Board and Fixture Architecture 

The design employs a four-layer PCB with separate ana-
log and digital ground planes on the top and bottom lay-
ers, isolated by a dielectric to suppress noise coupling. A 
star-point connection at the AFE supply cluster prevents 
ground loops, while decoupling capacitors (0.1 µF ceramic 
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Fig. 2. Pre-silicon verification flow. 

Algorithm 1. Statistical yield 
estimation across PVT corners.

Input: metrics[c][i] for i=1…100, c=each corner
Output: Yield curves
1 For each spec S ∈ {G, en_in, Voff, …}:
2 For each corner c:
3 Compute pass_i = (metrics[c][i] within S limits)
4 End for
5 Y_S(c) = Σ pass_i /100
6 End for
7 Plot Y_S versus c
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Fig. 3: Parasitic extraction and netlist integration.

As shown in Equation 3, the electrode–tissue interface is 
modeled by a series resistance (10 kΩ–100 kΩ) in series 
with a parallel R–C branch comprising the charge-trans-
fer resistance (500 kΩ–2 MΩ) and double-layer capaci-
tance (1–10 nF). This equivalent circuit mimics in vivo 
electrode behavior and is implemented using preci-
sion resistors and NP0/C0G capacitors for stability. A 
switch-matrix allows rapid configuration for ECG, EMG, 
and temperature sensing in Table 1. To mitigate elec-
trode polarization drifts (±100 mV), the system injects 
a bias current of 100–500 nA for charge balancing, while 
an auto-offset DAC with 10 µV resolution continuously 
corrects slow shifts, preserving low-frequency biopoten-
tial fidelity.[31]

Instrumentation and Environmental Controls 

A comprehensive instrumentation suite was employed to 
ensure accuracy and reproducibility of measurements. 
The setup includes an AWG for stimulus generation, a 
low-noise power supply for stable biasing, a spectrum 

Table 1: Electrode impedance versus 
modalities and drift metrics.

Electrode 
Impedance (Ze)

Modalities 
Tested

Gain 
Drift (ΔG)

Noise Drift 
(Δe_n)

10 kΩ ECG +0.2 dB +0.05 µVrms

100 kΩ EMG +0.5 dB +0.12 µVrms

1 MΩ Temperature +0.8 dB +0.20 µVrms

2 MΩ High‐impedance 
biopotentials

+1.1 dB +0.35 µVrms

Table 2: Instrumentation suite and specifications.

Instrument Specification

Arbitrary Waveform 
Generator

1 μHz–20 MHz, 16-bit vertical 
resolution

Low-Noise Power Supply <1 μV rms noise, 0.1 mA 
resolution

Spectrum Analyzer 0.1 Hz–100 MHz, DANL <  
−150 dBm/Hz

Digital Storage 
Oscilloscope

1 GHz analog bandwidth,  
10 GSa/s, 12-bit ADC

Temperature Chamber –40°C to +85°C, ±0.1°C stability

LCR Meter 20 Hz–2 MHz, 0.01 % accuracy 
for R/C measurements

analyzer for noise characterization, a digital storage 
oscilloscope for time- and frequency-domain analysis, 
and an LCR meter for passive component validation. 
Environmental stability was maintained using a precision 
temperature chamber. Table 2. summarizes the instru-
ments and their key specifications. 

Automated Measurement Sequence 

The sequence of test condition setups, stimulus gener-
ation, and data capture is orchestrated using Algorithm 
2, enabling repeatable and automated measurement of 
gain, noise, THD, and offset.

This robust environment design guarantees that on-chip 
measurements of noise, gain, linearity, and calibration 
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Margin Evaluation

Measured performance (gain, noise, offset, and THD) 
was compared against target specifications using the 
margin metric in Equation 4. 

	 spec,max meas

spec,max
100S

S S
M

S

−
= × 	 (4)

where negative values indicate redesign or bias adjust-
ment before final tape-out. This systematic evaluation 
confirms compliance with design goals and guides any 
final optimization.

Documentation and Test-Chip Roadmap

Measurement Setup Documentation

A complete “Measurement Setup” section begins with 
high-level schematics and flowcharts. Figure 4 shows 
the top-level test-board block diagram, including power-
rail decoupling, electrode–emulator interface, AFE con-
nections, and instrument I/O. A detailed PCB layout 
excerpt annotates critical impedance-controlled traces 
and ground-plane splits, capturing the end-to-end test 
sequence.

Automated Data Capture and Analysis

All measurement runs are logged and processed using 
Algorithm 4, which configures instruments, triggers 
acquisitions, and computes key metrics such as gain, 
noise, and THD under each modality.

Each calibration loop processes 256 input samples at 
a 10 MHz clock, resulting in a total cycle time of 25.6 
µs per iteration. During the COMPUTE state, the offset 
error is estimated and corrected in an iterative manner. 

efficacy are both repeatable and representative of in 
vivo biomedical conditions. 

Prototype Characterization and Bench Testing

Test-Chip Integration

The AFE was evaluated using both wire-bonded and 
packaged dies mounted on a custom PCB. Wire-bonded 
dies, attached to ceramic carriers with gold wires, min-
imized inductance, while packaged devices used socket 
interfaces for easier replacement at the cost of higher 
parasitics.[33]

Measurement Procedures

Bench testing validated gain, noise, offset, and calibra-
tion performance under controlled electrode-impedance 
profiles. Gain and linearity were measured by applying 
a 1 kHz sine (10 µV–100 mV) and computing gain error 
from FFT analysis including THD. Noise was characterized 
with shorted inputs using a spectrum analyzer, and input-
referred noise was calculated. Power-rail susceptibility 
was evaluated by injecting sinusoidal ripple onto VDD, 
showing <0.1 µVrms noise increase and 0.5 dB SNDR deg-
radation. Offset and drift were extracted from calibration 
cycles with temperature drift. Calibration-loop effective-
ness was quantified by the convergence factor κ, with 
24-hour tests across 10 kΩ–1 MΩ electrode profiles con-
firming <30 µV offset drift and <0.2 µVrms noise variation.

Automated Test Flow

All tests were automated via instrument scripting. The pro-
totype bench-test sequence is summarized in Algorithm 3.

Algorithm 2. Automated instrument control and 
metric extraction.[32]

1: Initialize instruments and verify zero-offset calibrations 
2: For each test condition c ∈ {ECG, EMG, Temp}: 
3: Configure electrode-emulator network Z_e(c) 
4: Set AWG to stimulus waveform f and amplitude A 
5: Wait t_settle for system stabilization 
6: Acquire N samples from oscilloscope and spectrum 
analyzer 
7: Compute metrics: 
8: Gain G (c, f) = 20·log10(V_out/V_in) 
9: Noise e_n(c) = √∑ PSD(f)·Δf 
10: THD(c) via FFT analysis 
11: Offset V_off = mean(V_out) 
12: Store results in database 
13: End for 
14: Generate summary plots and statistical tables

Algorithm 3. Automated bench-test flow.[18]

Input: test_chip, instrument_list, modalities {ECG, 
EMG, Temp} 
Output: results [], flags 
1 mount (test_chip, PCB); init(instrument_list) 
2 forms in modalities do 
3 config_emulator(Ze(m)) 
4 gain, linearity ← run_gain_test(m) 
5 noise ← run_noise_test(m) 
6 drif, offset ← run_calibration(m); κ ← 
extract_convergence(drift) 
7 log(results, m, {gain, linearity, noise, drift, κ}) 
8 flags ← check_spec(results)
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the defect density, follows the Poisson distribution as 
expressed in (7), where λ denotes the defect density 
and A represents the die area.

	 Y=e−λA	 (7) 

This comprehensive roadmap from documentation 
through automated scripts to physical test flows ensures 
a seamless, journal-grade transition from design to sili-
con validation.

On-Chip Machine-Learning for Real-Time Artifact 
Rejection

To further improve signal fidelity in ambulatory and 
implantable settings, the hybrid calibration loop can be 
extended with a lightweight on-chip ML engine. Trained 
on artifact patterns (motion, polarization drift, and 
power-line hum), this core analyses SAR ADC outputs in 
real time and triggers fast bias, filter adjustments, or 
selective data gating. Implemented as a small hardware 
macro next to the FSM, the ML-augmented loop adds 
<5% power overhead while enabling adaptive artifact 
suppression for intelligent, IoT-ready biomedical SoCs.

Implementation

A. Design Flow and Toolchain

The AFE was designed in 180 nm CMOS using Cadence 
Virtuoso (analog) and Innovus (digital P&R). The SAR 

The reduction behavior follows an exponential decay 
given in Equation 5. 

	 e[n + 1] = (1 − κ) ⋅ e[n]	 (5)

where κ represents the offset reduction factor extracted 
from convergence measurements. Across multiple cali-
bration experiments, κ was found to be approximately 
0.3–0.4, ensuring offset convergence within three to four 
iterations. The FSM thus achieves fast correction even 
under electrode impedance variations ranging from 10 
kΩ to 1 MΩ, demonstrating robustness to drift and mis-
match. Equation 6 automates the extraction of gain and 
integrated noise from captured data.

	
( )

l

out,rms
10 ,in

in,rms
20log , , .

2
V

n h
f

V S f
G e f df

V G
= = ∫ 	 (6)

Wire-Bond and Probe-Station Workflow

Wafer-level screening and yield evaluation are per-
formed using Algorithm 5, which scans each die with 
corner-case test vectors and computes per-die pass/
fail metrics. For die attach and wire-bond, first mount 
the die on a ceramic carrier and cure the epoxy, then 
apply thermosonic wire bonds to connect the bond-
pads to the PCB land patterns. During probe-station 
screening, the wafer is positioned on a vacuum chuck, 
and micro-probes are used to contact the I/O pads for 
wafer-level measurements of DC current, mid-band gain, 
and noise floor. The predicted wafer yield, derived from 

Warm-up Calibration Stimulus Injection Data Capture

V4

N2

W3

Post-Processing

Fig. 4: Process–voltage–temperature corner simulation and statistical analysis block diagram.

Algorithm 4. Multicondition data logging and analysis.

Input: instrument_list, test_conditions 
Output: raw_data[], summary_results 
1 init(instrument_list) 
2 for cond in test_conditions do 
3 config_waveform(AWG, cond); wait(cond.settle_time) 
4 data ← acquire ([Scope, SA], cond.samples) 
5 metrics ← compute(data); log (raw_data, cond, data, 
metrics) 
6 save (raw_data, summary_results, “HDF5”)

Algorithm 5. Wafer-level screening 
and yield evaluation.

Input: wafer_map, test_vectors 
Output: die_results[], wafer_yield 
1 for each die in wafer_map do 
2 if edge_distance(die) < d_min then skip(die) 
3 for v in test_vectors do resp ← apply (v, die) 
4 die_pass ← check_spec(resp) 
5 die_results.append((die, die_pass)) 
6 end for 
7 wafer_yield ← count_pass(die_results)/total_dies 
8 report(wafer_yield, die_results)
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bandgap-derived reference drifts by ±1 mV across –40°C 
to +85°C, contributing ±0.15 % gain error at high codes. 
A ±1 mV buffer margin. 

Figure 5 illustrates the biasing and reference-monitor-
ing scheme, including drift-tracking and integrated gain 
calibration to ensure <1 mV stability across operating 
conditions. The FSM completes each calibration in 256 
cycles at 10 MHz, using ~0.03 mm² area with 110 FFs 
and 95 LUTs. Its 0.08 µW static power adds <6.5% to the 
1.25 µW/channel budget, enabling real-time updates 
with minimal overhead.

Multiphase Clock Generator

A six-stage current-starved ring oscillator produces 
phases  Each delay cell’s control voltage is tuned by 
a digital charge-pump loop (ctrl resolution = 5 mV) to 
achieve phase skew ≤100 ps. The CCO frequency fCCO≈10 
MHz at VDD=1.8 V is stabilized across ±10% supply varia-
tion. Table 10 compares measured phase-to-phase skew 
and frequency drift across ±10% supply variation for the 
six generated phases.

Layout and Floor planning

The chip floorplan was partitioned to minimize noise 
coupling between analog and digital domains. Analog 
blocks (CC-CG amplifier, IA, PGA, and filters) occupy 
quadrant A with a common substrate tie ring, while dig-
ital blocks (SAR FSM and clock generator) are placed in 
quadrant B with independent wells and substrate shields 
(Figure 6). Differential pairs were length-matched within 
±1 µm, and supply rails were routed on M5/M6 with 

ADC controller and DCU were coded in Verilog, synthe-
sized with Synopsys Design Compiler, and verified via a 
Tcl-based flow integrating DRC/LVS (Calibre), parasitic 
extraction (SPEF), and Spectre simulations.

Analog Circuit Implementation

1.	 CC-CG Class-E Amplifier: Input NMOS devices (W/L = 
200 µm/0.18 µm) and provide gm ≈ 5 mS. Cross-
coupled capacitors are 50 fF, with a six-bit DAC bias-
ing network spanning 1–10 µA (ΔI ≈ 0.14 µA). Bias 
follows Equation 8.

	 −
= GS th

bias
bias

V V
I

R
	 (8)

	 Headroom analysis shows VCM = 0.35–1.40 V (CC-CG) 
and 0.40–1.35 V (IA) at 1.8 V supply, ensuring toler-
ance to ±300 mV electrode offsets.

2.	 Instrumentation Amplifier & PGA: A four-phase 
(2  kHz) chopper suppresses 1/f noise, with IA gain 
set by selectable capacitors (200 fF–1.6 pF). The PGA 
employs a five-bit capacitive DAC (50 fF/LSB) for 
0–40 dB gain in eight dB steps, plus a five-bit offset 
DAC with 10 µV resolution.

3.	 Active RC Biquads: Each uses op-amps (W/L = 50 µm/ 
0.18 µm), R = 50 kΩ, C = 500 fF, yielding ω₀ = 2π·1 kHz,  
Q = 1. FDNR elements (R₁ = 100 kΩ, C₁ = 1 pF) realize 1/s² 
impedance, with equivalent capacitance in Equation 9. 

	
2
1

1
eq

C
C

R
= 	 (9)

Digital Calibration Engine

The 10-bit SAR ADC uses a charge-redistribution capac-
itive DAC (Cunit = 20 fF, Ctotal = 1024·Cunit) with MSB-
first logic operating at 15 ns/bit. A dynamic regenerative 
latch comparator achieves <10 ns decision time at 1.8 V, 
supporting 50–100 kS/s sampling for multimodal sig-
nals (ECG, EMG, and temperature). The FSM-based DCU 
cycles through IDLE–MEASURE–COMPUTE–UPDATE–HOLD, 
computing mean and variance over N = 256 samples. A 
bandgap reference ensures ±1 mV drift, and post-layout 
results show ±0.5 LSB INL and ±0.3 LSB DNL, meeting 
biomedical AFE requirements.

	 ( )221 1
, .x n x n

N N
µ σ µ= ∑ = ∑ −       	 (10)

In Equation 10, the FSM computes sample mean and 
variance to drive the calibration updates. The SAR ADC’s 
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decoupling capacitors (0.1 µF on M5, 1 µF on M6) placed 
above analog blocks. 

Tape-Out and Sign-Off

After DRC/LVS sign-off, an ECO was performed to insert 
antenna diodes and fill patterns, generating the final 
GDSII and SPEF files. Masks were submitted with a 
6-week turnaround, and the fabricated dies were pack-
aged in 64-pin ceramic QFNs mounted on a 4-layer PCB 
with star-grounding and IEEE-181-2011 compliant decou-
pling. Automated silicon characterization using PyVISA-
controlled AWG, oscilloscope, spectrum analyzer, and 
temperature chamber (−40°C to +85°C) validated gain, 
noise, offset, and calibration performance with 10 ms 
calibration cycles. Table 3 summarizes simulated versus 
measured results, showing close agreement, with only 
minor deviations attributed to process variation and ref-
erence-drift effects.

Results and Analysis

This section presents measured and simulated data 
alongside statistical and PVT analyses. Multiple tables 
summarize key metrics, and graph representations illus-
trate performance distributions, frequency response, 
and calibration behavior.

CC-CG Amplifier

IA + PGA

Filters

SAR ADC

DCU + Clock Generator

Buffers & I/O Pads
Test Structures & Spare

Routing & Decoupling
32.8%

16.4%
9.8%

4.1%

9.8%

6.6%

8.2%

12.3%
8.2%9.6%

16.4%

32.8%

Fig. 6: Top-level test-board block diagram.

Table 3: Simulated versus measured analog 
front-end performance metrics.

Metric Simulated Measured

Input-Referred Noise 3.2 µVrms 3.4 µVrms

Dynamic Range 92 dB 90 dB

CMRR 110 dB 105 dB

SNDR @1 kHz, 10 mVpp 78 dB 75 dB

Power/Channel 1.2 µW 1.25 µW

Gain Error after Calibration ±0.2 % ±0.3 %

Offset after Calibration <20 µV 25 µV

Table 4: Simulated versus measured analog front-end metrics with parasitic extraction parameters.

Metric Simulated Value Measured Value Deviation

Input-Referred Noise (µVrms) 3.2 3.4 +6.3%

Dynamic Range (dB) 92 90 –2 dB

CMRR (dB) 110 105 –5 dB

SNDR @ 1 kHz, 10 mVpp (dB) 78 75 –3 dB

Power/Channel (µW) 1.2 1.25 +4.2%

Gain Error after Calibration ±0.2% ±0.3% +0.1%

Offset after Calibration (µV) <20 25 +5 µV

Channel Skew (ps) <100 110 +10 ps

Performance Summary

Table 4 provides a summary of parasitic extraction 
parameters including metal resistivity, segment dimen-
sions, and coupling capacitances used for distributed RC 
modeling. 

PSRR was quantified by injecting a sinusoidal ripple 
on the 1.8 V rail and measuring the output spectrum. 
Results show >80 dB rejection at 10 Hz–1 kHz and >60 dB 
up to 100 kHz, limiting noise induced by supply to <0.1 
µVrms and SNDR degradation to <0.5 dB. The input-re-
ferred noise PSD exhibits a 1/f corner near 100 Hz and 
a flat ~20 nV/√Hz floor above 1 kHz. These character-
istics are illustrated in Figure 7, which plots both noise 
PSD and PSRR versus frequency, confirming low intrinsic 
noise and strong supply noise immunity across the bio-
medical band.

PVT Variation Analysis

Table 5 summarizes the noise, dynamic range, power, 
and gain error measured across PVT corners (S–40°C, 
TT/27°C, and F +85°C). The results confirm robust oper-
ation, with noise <4 µVrms, dynamic range above 88 dB, 
and power variation within 0.15 µW. Measured gain drift 
(+0.012 dB/°C) and offset drift (+0.35 µV/°C) indicate 
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ECG, 20 Hz for EMG, and 0.5 Hz for temperature mea-
surements. The –3 dB bandwidths span from sub-Hz to 
several hundred Hz, enabling accurate extraction of 
modality-specific signals. Figure 9 illustrates the mea-
sured magnitude responses, showing distinct passbands 
for each channel: a narrowband ECG filter around 1 Hz, a 
wider EMG filter centered at 20 Hz, and a low-frequency 
LPF for temperature. Together, the table and figure con-
firm proper channel-specific filtering across the biomed-
ical signal band, ensuring minimal overlap and robust 
separation of ECG, EMG, and temperature signals.

Calibration Convergence

To evaluate the efficiency of the proposed FSM-based 
calibration engine, both the dynamic convergence 
behavior and the hardware overhead were charac-
terized. The offset reduction across calibration cycles 
was measured under PVT variations, and the area and 
power impact of the calibration loop were extracted 
from post-layout simulations. A consolidated summary of 
these results is provided in Table 7.

The calibration convergence graph (Figure 10) shows 
that the FSM-based calibration engine reduces offset 
from ~150 µV to <20 µV within four calibration cycles, 
corresponding to a normalized decay factor of κ ≈ 0.32. 

Linearity and THD

The linearity of the proposed Class-E common-gate 
front-end was evaluated across input amplitudes from 
10 µVpp to 10 mVpp. As summarized in Table 8, the 
gain error remains within ±1.2% across the tested range. 
THD, shown in Figure 11, stays below –60 dB for inputs 
up to 100 mVpp, which is well within the range of typi-
cal biopotential signals. Even at higher amplitudes, THD 
remains below –50 dB, confirming that the AFE maintains 
adequate linearity and low distortion for ECG, EMG, and 
temperature acquisition.

Comparison with State-of-the-Art

To contextualize the proposed self-calibrating AFE, 
Table  9 compares key performance metrics against 
recent state-of-the-art AFEs. The comparison includes 

excellent thermal stability across –40°C to +85°C, keep-
ing offset shifts below 30 µV and gain variation <1 dB.

Figure 8 (Monte Carlo yield curves) complements these 
results by showing statistical yield across PVT corners, 
with >90% pass-rate maintained for both noise and 
dynamic range specifications. Together, Table 5 and 
Figure 1 demonstrate that the proposed AFE sustains 
high yield, thermal robustness, and stable performance 
across extreme operating conditions.

Frequency Response

Table 6 lists the filter parameters used for different 
sensing modalities, with center frequencies of 1 Hz for 
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Table 5: Process–voltage–temperature corner 
definitions and sweep conditions.

Condition Noise  
(µVrms)

DR  
(dB)

Power  
(µW)

Gain Error  
(%)

SS/–40°C 3.5 89 1.3 ±0.4

TT/27°C 3.2 92 1.2 ±0.3

FF/+85°C 3.8 88 1.35 ±0.5
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Table 6: Monte Carlo analysis parameters.

Section f0 (Hz) Q-Factor –3 dB BW (Hz)

ECG BPF 1 1.0 0.7–100

EMG BPF 20 0.8 10–500

Temp LPF 0.5 — 0–5
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Table 7: Calibration engine performance and convergence summary.

Metric Value Notes

Initial offset 150 µV Before calibration

Residual offset 16 µV After 4 cycles

Convergence cycles 4 Offset reduces 150 µV → 16 µV

Loop cycle time 25.6 µs 256 samples @ 10 MHz clocks

Drift adaptation factor κ 0.32 Extracted from exponential fit

Calibration area 0.03 mm² ~2.5% of total die area

Calibration power 0.08 µW ~6.5% of per-channel budget
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Fig. 10: Calibration convergence behavior of the 
FSM-based offset correction. The offset reduces from 
~150 µV to <20 µV within four cycles, corresponding 

to a normalized decay below 0.1.

Table 8. Calibration loop convergence and overhead.

Vin (mVpp) Gain Error (%) THD (dB)

0.01 ±0.1 −65

0.1 ±0.2 −60

1.0 ±0.5 −55

10.0 ±1.2 −50
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Fig. 11: CC-CG Class-E differential amplifier 
schematic.

process node, measured input-referred noise, dynamic 
range (or ENOB where reported), CMRR/PSRR, per-chan-
nel power, die area whether on-chip calibration is pro-
vided, and a short note on the main novelty. 

Detailed Area and Power Breakdown

Die-Area Breakdown

Table 10 shows a total die footprint of 1.20 mm², with 
routing/decoupling occupying the largest share (33.3%). 

Key analog blocks such as the CC-CG amplifier (12.5%), 
SAR ADC (10%), and I/O buffers (10%) dominate the 
active area, while digital overhead from the FSM and 
clock generator remains minimal, ensuring efficient floor 
planning and isolation.
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Table 9. Expanded benchmarking versus recent analog front-end (process node, noise, DR/
ENOB, CMRR/PSRR, power/channel, area, calibration capability, novelty).

Work (Ref) Tech node Noise (µVrms) DR/ENOB CMRR/PSRR (dB) Power (µW/ch) Area (mm²) Calibration

This work 180 nm 3.4 90 dB 105/80 1.25 1.20 Yes

Chen et al.[1] N/A 5.1 85 dB N/A 3.8 N/A No

Liu et al.[2] 40 nm 4.0 88 dB 111/N/A 2.1 0.18 Partial

Mondal et al.[7] N/A 3.8 89 dB N/A 2.5 N/A Yes

Table 10. Floorplan area breakdown 
and isolation strategies.

Block Area  
(mm²)

% of 
Total

CC-CG Class-E Amplifier 0.15 12.5 

Instrumentation Amplifier 0.05 4.2

Programmable Gain Amplifier 0.05 4.2 

Active-RC Filters (three modes) 0.08 6.7

10-bit SAR ADC 0.12 10.0

Digital Control Unit (FSM) 0.03 2.5

Multiphase Clock Generator 0.02 1.7

I/O Pads & Buffers 0.12 10.0

Test Structures & Spare Logic 0.20 16.7

Routing Channels & Decoupling 0.40 33.3

Total 1.20 100

Power-Profile Breakdown

Table 11 summarizes the static, dynamic, and total 
power consumption of individual AFE blocks. The SAR 
ADC accounts for the largest share (48% of the total), 
followed by the Class-E amplifier (20%) and instrumenta-
tion amplifier (16%). Overall, the complete mixed-signal 
AFE consumes 1.3 µW in ECG mode, which is well within 
the sub-2 µW per-channel target for wearable biomedi-
cal front-ends.

Chip Micrograph and Layout Photomask

Block diagram of the proposed mixed-signal AFE 
(Figure  12). The system integrates a CC-CG Class-E 

Table 11: Tape-out schedule and sign-off checklist.

Block Static (µW) Dynamic (µW) Total (µW) % of Total

CC-CG Amplifier 0.20 0.05 0.25 20.0

Instrumentation Amplifier 0.15 0.05 0.20 16.0

Programmable Gain Amplifier 0.10 0.05 0.15 12.0

Active-RC Filters 0.05 0.05 0.10 8.0

10-bit SAR ADC 0.30 0.30 0.60 48.0

Total 0.80 0.50 1.30 100

amplifier, instrumentation amplifier/PGA, FDNR-
enhanced active-RC filter array, 10-bit SAR ADC, FSM-
based digital calibration engine, and a multiphase clock 
generator, with I/O pads and buffers for chip interfacing.

Layout Photomask

Figure 13 illustrates the complete layout photomask, 
package photo, and floor plan of the proposed mixed-
signal AFE. The die employs substrate tie rings and 
block boundary fences to minimize substrate coupling, 
while multilayer metal shielding (M1–M6) protects sensi-
tive analog circuitry. The packaged chip is wire-bonded 
for PCB integration, enabling practical bench testing. 
The floor plan further highlights mixed-signal isolation, 
ensuring that digital switching activity does not degrade 
the noise floor of the AFE, which is critical for robust 
biomedical acquisition.

Biomedical Safety and Input Protection

The AFE incorporates on-chip ESD diodes and off-chip 
transient suppressors at the PCB interface to protect 
against handling and connector-insertion events, while 
a series resistor with clamp network prevents large dif-
ferential or common-mode voltages from damaging the 
front-end without degrading low-frequency signal integ-
rity. Measured input and enclosure leakage currents 
remain below 1 µA, meeting IEC 60601-1 limits, and the 
auto-bias network constrains DC injection to 100–500 nA, 
well within safe thresholds for skin-contact electrodes. 
All safety verification was performed using a source 
measure unit under ±300 V ESD and bias conditions, with 
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scripts and test records documented to support repro-
ducibility and future regulatory submissions.

Conclusion 

This work presented a self-calibrating mixed-signal 
AFE in 180 nm CMOS, integrating a Class-E differential 
amplifier, chopper IA/PGA, FDNR-based filters, and a 
hybrid SAR-FSM calibration engine for adaptive mul-
timodal signal conditioning. Measured performance 
includes 3.4 µVrms input-referred noise, 90 dB dynamic 
range, 105 dB CMRR, 75 dB SNDR at 1 kHz/10 mVpp, 

and 1.25 µW/channel power. Post-calibration offset is 
reduced from 150 µV to 16 µV within four cycles, with 
residual 25 µV, 110 ps inter-channel skew, and sta-
ble operation across –40°C to +85°C (gain drift +0.012 
dB/°C, offset drift +0.35 µV/°C). Future work targets 
in vivo validation, extended drift testing, on-chip ML 
for artifact suppression and bias adaptation, scaling 
to advanced nodes for higher efficiency, and integra-
tion with multielectrode arrays and wireless telemetry. 
These advances will enable IoT-ready biomedical SoCs 
for continuous monitoring, neurophysiology, and smart 
prosthetics.
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