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INTRODUCTION

This research presents a self-calibrating mixed-signal analog front-end (AFE) for multi-
modal biomedical sensing, implemented in a 180 nm CMOS process. A capacitive cross-cou-
pled common-gate Class-E amplifier with adaptive biasing sustains linearity and gain across
amplitude and temperature swings. A low-noise instrumentation amplifier and a program-
mable gain stage use digitally controlled offset and noise-aware bias tuning to support ECG,
EMG, and temperature channels. A hybrid calibration engine comprising a 10-bit SAR ADC
and on-chip finite-state machine enables closed-loop bias and offset compensation based
on real-time signal statistics. Multiphase, charge-controlled clocking ensures inter-channel
synchronization with minimal jitter, while active RC biquad filters with FDNRs enhance
common-mode rejection and out-of-band suppression. Post-layout simulations demonstrate
3.2 pVrms input-referred noise, 92 dB dynamic range, and 1.2 pW/channel power consump-
tion, with robust operation across process-voltage-temperature variations. These results
validate a reconfigurable, ultra-low-power AFE suited for next-generation loT-enabled bio-
medical SoCs.
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Wearable and implantable biomedical systems demand
analog front-ends (AFEs) that combine high input sen-
sitivity, wide dynamic range, and low-power operation
while remaining robust to electrode impedance varia-
tions and environmental noise. Conventional AFEs trade
off noise performance against power or area, and typi-
cally rely on static biasing or one-time calibration, which
is insufficient for long-term monitoring where drift and
mismatch are significant.['V[2]
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Recent works have demonstrated improvements in noise
efficiency and power reduction, achieving input-re-
ferred noise in the 2-5 pVrms range,l®!'! or programma-
ble gain and bandwidth for multimodal acquisition.[®
However, most prior AFEs lack continuous closed-loop
calibration, and several still require manual trimming
or external references to suppress drift.’}® Moreover,
time-interleaved converters improve throughput but
often suffer from phase skew and jitter that degrade the
overall dynamic range.!!
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To address these limitations, this paper presents a
self-calibrating mixed-signal AFE in 180 nm CMOS that
integrates an adaptive Class-E current-controlled gain
amplifier, FDNR-based active-RC filters, and a hybrid SAR
ADC with FSM-driven calibration. The design achieves
3.4 pVrms input-referred noise, 90 dB dynamic range,
105 dB CMRR, >80 dB PSRR, and 1.25 pW per-channel
power. Continuous calibration maintains offset below
20 pV and suppresses long-term drift across electrode
impedance variation. These results demonstrate robust
circuit-level modeling suitable for integration into porta-
ble biomedical devices.!"

RELATED WORK

Ultra-low-power AFE designs have achieved ECG front-
end operation below 100 nW through aggressive voltage
scaling,'""! while OTA-C notch filters demonstrate >60 dB
power-line interference suppression without degrading
noise.l'” For EEG and neural recording, high-order notch
and low-pass filter architectures extend artifact atten-
uation.[! Digital calibration acceleration using opti-
mized arithmetic blocks has been proposed to reduce
latency," and machine-learning-based modeling assists
bias tuning under process-voltage-temperature (PVT)
variations.[™1"1 Closed-loop adaptation circuits orig-
inally developed for gas sensors illustrate the broader
applicability of self-reconstruction techniques in
AFEs.[20-23]

Low-power microcontrollers tailored for wearable health
platforms emphasize real-time analog parameter con-
trol, 7124281 and advanced instrumentation amplifier
layouts reduce input-referred noise below 4 pVrms at
1.8 V.?I Dynamic biasing in scaled technologies such as
22 nm FDSOI preserves linearity in neural arrays,?% while
multimodal adaptation strategies have been explored
in integrated sensing frameworks." In spite of these
advances, no reported AFE consolidates continuous
bias adaptation, closed-loop offset calibration, FDNR-
enhanced filtering, and sub-100 ps multiphase synchro-
nization across ECG, EMG, and temperature channels
in a single sub-pW SoC. The proposed design addresses
this gap with an adaptive Class-E biasing stage, hybrid
SAR-FSM calibration engine, and charge-controlled mul-
tiphase clock generator implemented in 180 nm CMOS.

PRE-SILICON VERIFICATION AND TESTING ROADMAP

The pre-silicon verification flow first ensures layout-
schematic matching with parasitic extraction for realis-
tic simulations. A dedicated PCB test setup with fixtures
and instrumentation then enables accurate on-chip

20 [

measurements, followed by prototype bench testing on
wire-bonded or packaged chips to assess noise, gain,
offset, and calibration performance. Finally, documen-
tation of measurement automation, probe station proce-
dures, and test-chip roadmaps streamline the transition
from design to silicon validation and publication. The
robustness of this flow is illustrated in Figure 1, where
Monte Carlo pass-rate across PVT corners (SS/-40°C,
TT/27°C, FF/+85°C) confirms high yield at nominal condi-
tions with only modest degradation at extremes.

Pre-Silicon Verification, Parasitic Extraction (PEX),
and Verification Environment Architecture

The pre-silicon sign-off process is driven by a hierarchi-
cal EDA flow that inputs both the GDSII layout and sche-
matic netlist into DRC/LVS engines, followed by PEX and
merged SPICE simulations in Figure 2. Both the GDSII
layout and schematic netlist are input into the DRC/
LVS verification engines. Once the design passes DRC
and LVS checks, the clean GDSII file is passed to the PEX
tool. The resulting Standard Parasitic Exchange Format
(SPEF) file is then merged with the behavioral SPICE
netlist.l" A script-driven simulator conducts a suite of
analyses DC, AC, noise, and transient under nominal and
corner PVT conditions. Post-simulation, waveform data
are statistically processed to extract performance met-
rics and compute design yield.

Layout Verification and Post-Layout Simulation

Design rule check (DRC) ensures compliance with
foundry constraints (minimum feature sizes, metal den-
sity, and antenna rules), while layout-versus-schematic
(LVS) confirms equivalence between the extracted net-
list and schematic, that is, netlist,,, = netlist,.. Once

DRC and LVS pass, PEX is performed to model intercon-
nect resistance and capacitance. Segment resistance is

100
80-0//\
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40}
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20F

0 I
SS/-40°C

TT/27°C FF/+85°C

Fig. 1: Monte Carlo pass-rate across process-voltage-
temperature corners (SS, TT, FF).
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Fig. 2. Pre-silicon verification flow.

given by Rseg = pL/(Wt) while capacitance includes intrin-
sic and coupling effects, C = C LW + ZCCOUP[E, with
PEX exporting distributed RC networks in SPEF format
for SPICE. The s-domain impedance of a subdivided line

is approximated as (See. Equation 1):

Reeg (1 1 N
Ziine(s) = ﬁg £§+§Rsegcsegsj (1

capturing delay and signal integrity.

Using the parasitic-aware netlist, SPICE simulations
are run: DC analysis verifies bias points (e.g., |,,), AC

extracts gain and poles (f,,,f,,), noise analysis computes

input-referred noise (en,in = ,[Ze,%’,. ), and transient
analysis applies a 1 kHz, 10 mVpp sine to measure total
harmonic distortion (THD), defined as (See. Equation 2):

N2V
THD =20log,, [ “2—3 )

1

Statistical robustness is evaluated via PVT corner sweeps
(SS/TT/FF across -40°C to 85°C, 0.9x-1.1xVDD, and
Monte Carlo analysis (100 runs, with Vth=25 mV, op/p =
2%). Algorithm 1 automates statistical yield estimation
by computing pass rates for key specs (gain, noise, and
offset) across 100 Monte Carlo runs per PVT corner.

MEASUREMENT ENVIRONMENT DESIGN

Test Board and Fixture Architecture

The design employs a four-layer PCB with separate ana-
log and digital ground planes on the top and bottom lay-
ers, isolated by a dielectric to suppress noise coupling. A
star-point connection at the AFE supply cluster prevents
ground loops, while decoupling capacitors (0.1 yF ceramic
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Algorithm 1. Statistical yield
estimation across PVT corners.

Input: metrics[c][i] for i=1...100, c=each corner
Output: Yield curves

1 For each spec S € {G, e __in, Voff, ..}:

2 For each corner c:

3 Compute pass_i = (metrics[c][i] within S limits)
4 End for

5Y_S(c) = X pass_i /100

6 End for

7 Plot Y_S versus ¢

and 10 pF tantalum) are placed within 2 mm of supply
pins for high- and low-frequency filtering. Controlled-
impedance 50 Q microstrip lines route high-speed dig-
ital and clock signals to minimize reflections. The PCB
accommodates both packaged dies and wire-bonded bare
dies via spring probes or solder-pad footprints. Shielded
enclosures around the AFE further mitigate EMI, ensuring
clean analog acquisition (Figure 3).

To evaluate EMI resilience, tests per IEC 61000-4-3 revealed
a 3 dB SNDR drop and +0.2 pVrms noise rise under a 1 V/m
radiated field (80 MHz-1 GHz). Power-rail interference had
minimal impact because of robust decoupling. For added
suppression, on-SoC capacitors (0.1 yF ceramic, 1 uF MIM)
at bias and analog nodes are advised, along with opti-
mized ground routing and balanced differential layout to
reduce common-mode coupling.

Electrode Impedance Emulation

A realistic electrode interface is emulated using a bio-
physical equivalent circuit defined as
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Fig. 3: Parasitic extraction and netlist integration.

As shown in Equation 3, the electrode-tissue interface is
modeled by a series resistance (10 kQ-100 kQ) in series
with a parallel R-C branch comprising the charge-trans-
fer resistance (500 kQ-2 MQ) and double-layer capaci-
tance (1-10 nF). This equivalent circuit mimics in vivo
electrode behavior and is implemented using preci-
sion resistors and NPO/COG capacitors for stability. A
switch-matrix allows rapid configuration for ECG, EMG,
and temperature sensing in Table 1. To mitigate elec-
trode polarization drifts (100 mV), the system injects
a bias current of 100-500 nA for charge balancing, while
an auto-offset DAC with 10 pV resolution continuously
corrects slow shifts, preserving low-frequency biopoten-
tial fidelity.B"

Instrumentation and Environmental Controls

A comprehensive instrumentation suite was employed to
ensure accuracy and reproducibility of measurements.
The setup includes an AWG for stimulus generation, a
low-noise power supply for stable biasing, a spectrum

Table 1: Electrode impedance versus
modalities and drift metrics.

Electrode Modalities Gain Noise Drift

Impedance (Z) | Tested Drift (AG) | (Ae_n)

10 kQ ECG +0.2 dB +0.05 pVrms

100 kQ EMG +0.5 dB +0.12 yVrms

1 MQ Temperature +0.8 dB +0.20 pVrms

2 MQ High-impedance | +1.1 dB +0.35 pVrms
biopotentials

20 [

Table 2: Instrumentation suite and specifications.

Instrument Specification
Arbitrary Waveform 1 yHz-20 MHz, 16-bit vertical
Generator resolution
Low-Noise Power Supply | <1 gV rms noise, 0.1 mA
resolution
Spectrum Analyzer 0.1 Hz-100 MHz, DANL <
-150 dBm/Hz

Digital Storage
Oscilloscope

1 GHz analog bandwidth,
10 GSa/s, 12-bit ADC

-40°C to +85°C, +0.1°C stability

20 Hz-2 MHz, 0.01 % accuracy
for R/C measurements

Temperature Chamber

LCR Meter

analyzer for noise characterization, a digital storage
oscilloscope for time- and frequency-domain analysis,
and an LCR meter for passive component validation.
Environmental stability was maintained using a precision
temperature chamber. Table 2. summarizes the instru-
ments and their key specifications.

Automated Measurement Sequence

The sequence of test condition setups, stimulus gener-
ation, and data capture is orchestrated using Algorithm
2, enabling repeatable and automated measurement of
gain, noise, THD, and offset.

This robust environment design guarantees that on-chip
measurements of noise, gain, linearity, and calibration

Journal of VLSI circuits and systems, ISSN 2582-1458
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Algorithm 2. Automated instrument control and
metric extraction.3

1: Initialize instruments and verify zero-offset calibrations
2: For each test condition c € {ECG, EMG, Temp}:

3: Configure electrode-emulator network Z_e(c)

4: Set AWG to stimulus waveform f and amplitude A
5: Wait t_settle for system stabilization

6: Acquire N samples from oscilloscope and spectrum
analyzer

7: Compute metrics:

8: Gain G (c, f) = 20-log10(V_out/V_in)

9: Noise e_n(c) = /Y PSD(f)-Af

10: THD(c) via FFT analysis

11: Offset V_off = mean(V_out)

12: Store results in database

13: End for

14: Generate summary plots and statistical tables

efficacy are both repeatable and representative of in
vivo biomedical conditions.

PROTOTYPE CHARACTERIZATION AND BENCH TESTING
Test-Chip Integration

The AFE was evaluated using both wire-bonded and
packaged dies mounted on a custom PCB. Wire-bonded
dies, attached to ceramic carriers with gold wires, min-
imized inductance, while packaged devices used socket
interfaces for easier replacement at the cost of higher
parasitics.!

Measurement Procedures

Bench testing validated gain, noise, offset, and calibra-
tion performance under controlled electrode-impedance
profiles. Gain and linearity were measured by applying
a 1 kHz sine (10 pyv-100 mV) and computing gain error
from FFT analysis including THD. Noise was characterized
with shorted inputs using a spectrum analyzer, and input-
referred noise was calculated. Power-rail susceptibility
was evaluated by injecting sinusoidal ripple onto VDD,
showing <0.1 pVrms noise increase and 0.5 dB SNDR deg-
radation. Offset and drift were extracted from calibration
cycles with temperature drift. Calibration-loop effective-
ness was quantified by the convergence factor k, with
24-hour tests across 10 kQ-1 MQ electrode profiles con-
firming <30 pV offset drift and <0.2 pVrms noise variation.

Automated Test Flow

All tests were automated via instrument scripting. The pro-
totype bench-test sequence is summarized in Algorithm 3.

Journal of VLSI circuits and systems, ISSN 2582-1458

Algorithm 3. Automated bench-test flow.['®!

Input: test_chip, instrument_Llist, modalities {ECG,
EMG, Temp}

Output: results [], flags

1 mount (test_chip, PCB); init(instrument_list)
2 forms in modalities do

3 config_emulator(Ze(m))

4 gain, linearity < run_gain_test(m)

5 noise « run_noise_test(m)

6 drif, offset « run_calibration(m); K <
extract_convergence(drift)

7 log(results, m, {gain, linearity, noise, drift, k})
8 flags < check_spec(results)

Margin Evaluation

Measured performance (gain, noise, offset, and THD)
was compared against target specifications using the
margin metric in Equation 4.

MS _ Sspec,max _Smeas %100 (4)
S

spec,max

where negative values indicate redesign or bias adjust-
ment before final tape-out. This systematic evaluation
confirms compliance with design goals and guides any
final optimization.

DOCUMENTATION AND TEST-CHIP ROADMAP

Measurement Setup Documentation

A complete “Measurement Setup” section begins with
high-level schematics and flowcharts. Figure 4 shows
the top-level test-board block diagram, including power-
rail decoupling, electrode-emulator interface, AFE con-
nections, and instrument 1/0. A detailed PCB layout
excerpt annotates critical impedance-controlled traces
and ground-plane splits, capturing the end-to-end test
sequence.

Automated Data Capture and Analysis

All measurement runs are logged and processed using
Algorithm 4, which configures instruments, triggers
acquisitions, and computes key metrics such as gain,
noise, and THD under each modality.

Each calibration loop processes 256 input samples at
a 10 MHz clock, resulting in a total cycle time of 25.6
Us per iteration. During the COMPUTE state, the offset
error is estimated and corrected in an iterative manner.
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Fig. 4: Process-voltage-temperature corner simulation and statistical analysis block diagram.

Algorithm 4. Multicondition data logging and analysis.

Input: instrument_list, test_conditions

Output: raw_data[], summary_results

1 init(instrument_list)

2 for cond in test_conditions do

3 config_waveform(AWG, cond); wait(cond.settle_time)
4 data < acquire ([Scope, SA], cond.samples)

5 metrics « compute(data); log (raw_data, cond, data,
metrics)

6 save (raw_data, summary._results, “HDF5”)

The reduction behavior follows an exponential decay
given in Equation 5.

eln+1]1=(1-x) - e[n] (5)

where k represents the offset reduction factor extracted
from convergence measurements. Across multiple cali-
bration experiments, k was found to be approximately
0.3-0.4, ensuring offset convergence within three to four
iterations. The FSM thus achieves fast correction even
under electrode impedance variations ranging from 10
kQ to 1 MQ, demonstrating robustness to drift and mis-
match. Equation 6 automates the extraction of gain and
integrated noise from captured data.

Sv(f)
G2’

v,
G =20log;g 1, ey, = | i df. (6)
§

in,rms

Wire-Bond and Probe-Station Workflow

Wafer-level screening and vyield evaluation are per-
formed using Algorithm 5, which scans each die with
corner-case test vectors and computes per-die pass/
fail metrics. For die attach and wire-bond, first mount
the die on a ceramic carrier and cure the epoxy, then
apply thermosonic wire bonds to connect the bond-
pads to the PCB land patterns. During probe-station
screening, the wafer is positioned on a vacuum chuck,
and micro-probes are used to contact the I/0 pads for
wafer-level measurements of DC current, mid-band gain,
and noise floor. The predicted wafer yield, derived from

Algorithm 5. Wafer-level screening
and yield evaluation.

Input: wafer_map, test_vectors

Output: die_results[], wafer_yield

1 for each die in wafer_map do

2 if edge_distance(die) < d_min then skip(die)

3 for v in test_vectors do resp < apply (v, die)

4 die_pass < check_spec(resp)

5 die_results.append((die, die_pass))

6 end for

7 wafer_yield < count_pass(die_results)/total_dies
8 report(wafer_yield, die_results)

the defect density, follows the Poisson distribution as
expressed in (7), where A denotes the defect density
and A represents the die area.

Y= (7)

This comprehensive roadmap from documentation
through automated scripts to physical test flows ensures
a seamless, journal-grade transition from design to sili-
con validation.

On-Chip Machine-Learning for Real-Time Artifact
Rejection

To further improve signal fidelity in ambulatory and
implantable settings, the hybrid calibration loop can be
extended with a lightweight on-chip ML engine. Trained
on artifact patterns (motion, polarization drift, and
power-line hum), this core analyses SAR ADC outputs in
real time and triggers fast bias, filter adjustments, or
selective data gating. Implemented as a small hardware
macro next to the FSM, the ML-augmented loop adds
<5% power overhead while enabling adaptive artifact
suppression for intelligent, loT-ready biomedical SoCs.

IMPLEMENTATION

A. Design Flow and Toolchain

The AFE was designed in 180 nm CMOS using Cadence
Virtuoso (analog) and Innovus (digital P&R). The SAR

Journal of VLSI circuits and systems, ISSN 2582-1458
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ADC controller and DCU were coded in Verilog, synthe-
sized with Synopsys Design Compiler, and verified via a
Tcl-based flow integrating DRC/LVS (Calibre), parasitic
extraction (SPEF), and Spectre simulations.

Analog Circuit Implementation

1. CC-CG Class-E Amplifier: Input NMOS devices (W/L =
200 pm/0.18 pym) and provide gm = 5 mS. Cross-
coupled capacitors are 50 fF, with a six-bit DAC bias-
ing network spanning 1-10 pA (Al = 0.14 pA). Bias
follows Equation 8.

po = Yes —Ven (8)
bias R
bias

Headroom analysis shows VCM = 0.35-1.40 V (CC-CG)
and 0.40-1.35 V (IA) at 1.8 V supply, ensuring toler-
ance to +300 mV electrode offsets.

2. Instrumentation Amplifier & PGA: A four-phase
(2 kHz) chopper suppresses 1/f noise, with IA gain
set by selectable capacitors (200 fF-1.6 pF). The PGA
employs a five-bit capacitive DAC (50 fF/LSB) for
0-40 dB gain in eight dB steps, plus a five-bit offset
DAC with 10 pV resolution.

3. Active RC Biquads: Each uses op-amps (W/L = 50 pm/
0.18 pm), R =50 kQ, C = 500 fF, yielding wo = 2x-1 kHz,
Q= 1. FDNR elements (R1 = 100 kQ, C1 = 1 pF) realize 1/s2
impedance, with equivalent capacitance in Equation 9.

_a
eq_R_1

©)

Digital Calibration Engine

The 10-bit SAR ADC uses a charge-redistribution capac-
itive DAC (Cunit = 20 fF, C__ = 1024-Cunit) with MSB-
first logic operating at 15 ns/bit. A dynamic regenerative
latch comparator achieves <10 ns decision time at 1.8 V,
supporting 50-100 kS/s sampling for multimodal sig-
nals (ECG, EMG, and temperature). The FSM-based DCU
cycles through IDLE-MEASURE-COMPUTE-UPDATE-HOLD,
computing mean and variance over N = 256 samples. A
bandgap reference ensures +1 mV drift, and post-layout
results show +0.5 LSB INL and +0.3 LSB DNL, meeting
biomedical AFE requirements.

1 1 2
u=Zx[n], o2 :NZ(x[n]—,u) . (10

In Equation 10, the FSM computes sample mean and
variance to drive the calibration updates. The SAR ADC’s
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bandgap-derived reference drifts by +1 mV across -40°C
to +85°C, contributing +0.15 % gain error at high codes.
A £1 mV buffer margin.

Figure 5 illustrates the biasing and reference-monitor-
ing scheme, including drift-tracking and integrated gain
calibration to ensure <1 mV stability across operating
conditions. The FSM completes each calibration in 256
cycles at 10 MHz, using ~0.03 mm? area with 110 FFs
and 95 LUTs. Its 0.08 pyW static power adds <6.5% to the
1.25 pW/channel budget, enabling real-time updates
with minimal overhead.

Multiphase Clock Generator

A six-stage current-starved ring oscillator produces
phases Each delay cell’s control voltage is tuned by
a digital charge-pump loop (ctr, resolution = 5 mV) to
achieve phase skew <100 ps. The CCO frequency fCCO=10
MHz at VDD=1.8 V is stabilized across +10% supply varia-
tion. Table 10 compares measured phase-to-phase skew
and frequency drift across +10% supply variation for the
six generated phases.

Layout and Floor planning

The chip floorplan was partitioned to minimize noise
coupling between analog and digital domains. Analog
blocks (CC-CG amplifier, IA, PGA, and filters) occupy
quadrant A with a common substrate tie ring, while dig-
ital blocks (SAR FSM and clock generator) are placed in
quadrant B with independent wells and substrate shields
(Figure 6). Differential pairs were length-matched within
+1 pm, and supply rails were routed on M5/Mé6 with

Bandgap
Reference
Bandgap
Generator Ve |
1.2V Ay C
(Output) o TO—
1
+ Low-T"E Bias
Active Buffer
Low-TC Bias K i i
= Drift tracking
Slew Rate Detecit deviations
within <1mV
+ +

Reference Monitor +
I;. Block = <1mV +
Tiggers FSM updates l +

z @
SARADC
Integrated Gain
Cablration

Fig. 5: PCB stack-up and ground-plane architecture.

245



Vithyalakshmi N. et al.
Self-Calibrating Mixed-Signal Analog Front-End with Adaptive Bias for Multimodal Biopotential Sensing

CC-CG Amplifier .

IA+ PGA Routing & Decoupling

32.8%

Filters 32.8%

16.4%
SARADC
16.4%
DCU + Clock Generator

Test Structures & Spare
Buffers & I/O Pads

Fig. 6: Top-level test-board block diagram.

decoupling capacitors (0.1 uF on M5, 1 pF on Mé) placed
above analog blocks.

Tape-Out and Sign-Off

After DRC/LVS sign-off, an ECO was performed to insert
antenna diodes and fill patterns, generating the final
GDSIl and SPEF files. Masks were submitted with a
6-week turnaround, and the fabricated dies were pack-
aged in 64-pin ceramic QFNs mounted on a 4-layer PCB
with star-grounding and IEEE-181-2011 compliant decou-
pling. Automated silicon characterization using PyVISA-
controlled AWG, oscilloscope, spectrum analyzer, and
temperature chamber (-40°C to +85°C) validated gain,
noise, offset, and calibration performance with 10 ms
calibration cycles. Table 3 summarizes simulated versus
measured results, showing close agreement, with only
minor deviations attributed to process variation and ref-
erence-drift effects.

RESULTS AND ANALYSIS

This section presents measured and simulated data
alongside statistical and PVT analyses. Multiple tables
summarize key metrics, and graph representations illus-
trate performance distributions, frequency response,
and calibration behavior.

Table 3: Simulated versus measured analog
front-end performance metrics.

Metric Simulated Measured
Input-Referred Noise 3.2 yVrms 3.4 yVrms
Dynamic Range 92 dB 90 dB
CMRR 110 dB 105 dB
SNDR @1 kHz, 10 mVpp 78 dB 75 dB
Power/Channel 1.2 yW 1.25 W
Gain Error after Calibration +0.2 % +0.3 %
Offset after Calibration <20 pv 25 v

Performance Summary

Table 4 provides a summary of parasitic extraction
parameters including metal resistivity, segment dimen-
sions, and coupling capacitances used for distributed RC
modeling.

PSRR was quantified by injecting a sinusoidal ripple
on the 1.8 V rail and measuring the output spectrum.
Results show >80 dB rejection at 10 Hz-1 kHz and >60 dB
up to 100 kHz, limiting noise induced by supply to <0.1
pVrms and SNDR degradation to <0.5 dB. The input-re-
ferred noise PSD exhibits a 1/f corner near 100 Hz and
a flat ~20 nV//Hz floor above 1 kHz. These character-
istics are illustrated in Figure 7, which plots both noise
PSD and PSRR versus frequency, confirming low intrinsic
noise and strong supply noise immunity across the bio-
medical band.

PVT Variation Analysis

Table 5 summarizes the noise, dynamic range, power,
and gain error measured across PVT corners (S-40°C,
TT/27°C, and F +85°C). The results confirm robust oper-
ation, with noise <4 pVrms, dynamic range above 88 dB,
and power variation within 0.15 pW. Measured gain drift
(+0.012 dB/°C) and offset drift (+0.35 pV/°C) indicate

Table 4: Simulated versus measured analog front-end metrics with parasitic extraction parameters.

Metric Simulated Value Measured Value Deviation
Input-Referred Noise (uVrms) 3.2 3.4 +6.3%
Dynamic Range (dB) 92 90 -2 dB
CMRR (dB) 110 105 -5dB
SNDR @ 1 kHz, 10 mVpp (dB) 78 75 -3dB
Power/Channel (uW) 1.2 1.25 +4.2%
Gain Error after Calibration +0.2% +0.3% +0.1%
Offset after Calibration (pV) <20 25 +5 v
Channel Skew (ps) <100 110 +10 ps
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AFE Performance: Noise PSD and PSRR
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Fig. 7: Analog front-end spectral performance: input-
referred noise PSD and PSRR versus frequency.

Table 5: Process-voltage-temperature corner
definitions and sweep conditions.

Condition Noise DR Power Gain Error
(uVrms) | (dB) (HW) (%)
SS/-40°C 3.5 89 1.3 +0.4
TT/27°C 3.2 92 1.2 0.3
FF/+85°C 3.8 88 1.35 +0.5

Monte Carlo Yield Curves
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Fig. 8: Biophysical electrode interface equivalent
circuit.

excellent thermal stability across -40°C to +85°C, keep-
ing offset shifts below 30 pV and gain variation <1 dB.

Figure 8 (Monte Carlo yield curves) complements these
results by showing statistical yield across PVT corners,
with >90% pass-rate maintained for both noise and
dynamic range specifications. Together, Table 5 and
Figure 1 demonstrate that the proposed AFE sustains
high yield, thermal robustness, and stable performance
across extreme operating conditions.

Frequency Response

Table 6 lists the filter parameters used for different
sensing modalities, with center frequencies of 1 Hz for
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ECG, 20 Hz for EMG, and 0.5 Hz for temperature mea-
surements. The -3 dB bandwidths span from sub-Hz to
several hundred Hz, enabling accurate extraction of
modality-specific signals. Figure 9 illustrates the mea-
sured magnitude responses, showing distinct passbands
for each channel: a narrowband ECG filter around 1 Hz, a
wider EMG filter centered at 20 Hz, and a low-frequency
LPF for temperature. Together, the table and figure con-
firm proper channel-specific filtering across the biomed-
ical signal band, ensuring minimal overlap and robust
separation of ECG, EMG, and temperature signals.

Calibration Convergence

To evaluate the efficiency of the proposed FSM-based
calibration engine, both the dynamic convergence
behavior and the hardware overhead were charac-
terized. The offset reduction across calibration cycles
was measured under PVT variations, and the area and
power impact of the calibration loop were extracted
from post-layout simulations. A consolidated summary of
these results is provided in Table 7.

The calibration convergence graph (Figure 10) shows
that the FSM-based calibration engine reduces offset
from ~150 pV to <20 pV within four calibration cycles,
corresponding to a normalized decay factor of k = 0.32.

Linearity and THD

The linearity of the proposed Class-E common-gate
front-end was evaluated across input amplitudes from
10 pVpp to 10 mVpp. As summarized in Table 8, the
gain error remains within +1.2% across the tested range.
THD, shown in Figure 11, stays below -60 dB for inputs
up to 100 mVpp, which is well within the range of typi-
cal biopotential signals. Even at higher amplitudes, THD
remains below -50 dB, confirming that the AFE maintains
adequate linearity and low distortion for ECG, EMG, and
temperature acquisition.

Comparison with State-of-the-Art

To contextualize the proposed self-calibrating AFE,
Table 9 compares key performance metrics against
recent state-of-the-art AFEs. The comparison includes

Table 6: Monte Carlo analysis parameters.

Section f, (Hz) Q-Factor -3 dB BW (Hz)
ECG BPF 1 1.0 0.7-100
EMG BPF 20 0.8 10-500
Temp LPF 0.5 — 0-5
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Fig. 9: Measured analog front-end responses (magnitude response of ECG, EMG, and temperature channels,

showing channel-specific filtering).

Table 7: Calibration engine performance and convergence summary.

Metric Value Notes

Initial offset 150 pv Before calibration

Residual offset 16 pv After 4 cycles

Convergence cycles 4 Offset reduces 150 pV — 16 pV
Loop cycle time 25.6 s 256 samples @ 10 MHz clocks
Drift adaptation factor k 0.32 Extracted from exponential fit
Calibration area 0.03 mm? ~2.5% of total die area
Calibration power 0.08 yW ~6.5% of per-channel budget

Calibration Convergence Behavior

150 o) 21.0 Table 8. Calibration loop convergence and overhead.
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process node, measured input-referred noise, dynamic
range (or ENOB where reported), CMRR/PSRR, per-chan-
nel power, die area whether on-chip calibration is pro-
vided, and a short note on the main novelty.

DETAILED AREA AND POWER BREAKDOWN

Die-Area Breakdown

Table 10 shows a total die footprint of 1.20 mmz?, with
routing/decoupling occupying the largest share (33.3%).

Input Amplitude (mVpp)

Fig. 11: CC-CG Class-E differential amplifier
schematic.

Key analog blocks such as the CC-CG amplifier (12.5%),
SAR ADC (10%), and I/0 buffers (10%) dominate the
active area, while digital overhead from the FSM and
clock generator remains minimal, ensuring efficient floor
planning and isolation.
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Table 9. Expanded benchmarking versus recent analog front-end (process node, noise, DR/
ENOB, CMRR/PSRR, power/channel, area, calibration capability, novelty).

Work (Ref) Tech node | Noise (uVrms) | DR/ENOB | CMRR/PSRR (dB) | Power (uW/ch) | Area (mm?) | Calibration
This work 180 nm 3.4 90 dB 105/80 1.25 1.20 Yes
Chen et al.l" N/A 5.1 85 dB N/A 3.8 N/A No
Liu et al.[ 40 nm 4.0 88 dB 111/N/A 2.1 0.18 Partial
Mondal et al.[”? N/A 3.8 89 dB N/A 2.5 N/A Yes
Table 10. Floorp.lan area b'.'eakdown amplifier, instrumentation  amplifier/PGA, FDNR-
and isolation strategies. . . .
enhanced active-RC filter array, 10-bit SAR ADC, FSM-
Block Area % of based digital calibration engine, and a multiphase clock
(mm?) Total generator, with I/0 pads and buffers for chip interfacing.
CC-CG Class-E Amplifier 0.15 12.5
Instrumentation Amplifier 0.05 4.2
Programmable Gain Amplifier 0.05 4.2 Layout Photomask
Active-RC Filters (three modes) 0.08 6.7 Figure 13 illustrates the complete layout photomask,
10-bit SAR ADC 0.12 10.0 package photo, and floor plan of the proposed mixed-
Digital Control Unit (FSM) 0.03 25 signal AFE. The die employs. Sl:IbStl’ate tie rings .and
Multiphase Clock Generator 0.02 17 bloFk boquary fences tq mlplmlze substrate couplmg,
while multilayer metal shielding (M1-Mé) protects sensi-
|/0 Pads & Buffers 0.12 10.0 tive analog circuitry. The packaged chip is wire-bonded
Test Structures & Spare Logic 0.20 16.7 for PCB integration, enabling practical bench testing.
Routing Channels & Decoupling 0.40 33.3 The floor plan further highlights mixed-signal isolation,
Total 1.20 100 ensuring that digital switching activity does not degrade

Power-Profile Breakdown

Table 11 summarizes the static, dynamic, and total
power consumption of individual AFE blocks. The SAR
ADC accounts for the largest share (48% of the total),
followed by the Class-E amplifier (20%) and instrumenta-
tion amplifier (16%). Overall, the complete mixed-signal
AFE consumes 1.3 pW in ECG mode, which is well within
the sub-2 pW per-channel target for wearable biomedi-
cal front-ends.

Chip Micrograph and Layout Photomask

Block diagram of the proposed mixed-signal AFE
(Figure 12). The system integrates a CC-CG Class-E

the noise floor of the AFE, which is critical for robust
biomedical acquisition.

Biomedical Safety and Input Protection

The AFE incorporates on-chip ESD diodes and off-chip
transient suppressors at the PCB interface to protect
against handling and connector-insertion events, while
a series resistor with clamp network prevents large dif-
ferential or common-mode voltages from damaging the
front-end without degrading low-frequency signal integ-
rity. Measured input and enclosure leakage currents
remain below 1 pA, meeting IEC 60601-1 limits, and the
auto-bias network constrains DC injection to 100-500 nA,
well within safe thresholds for skin-contact electrodes.
All safety verification was performed using a source
measure unit under +300 V ESD and bias conditions, with

Table 11: Tape-out schedule and sign-off checklist.

Block Static (uW) Dynamic (pW) Total (HW) % of Total
CC-CG Amplifier 0.20 0.05 0.25 20.0
Instrumentation Amplifier 0.15 0.05 0.20 16.0
Programmable Gain Amplifier 0.10 0.05 0.15 12.0
Active-RC Filters 0.05 0.05 0.10 8.0
10-bit SAR ADC 0.30 0.30 0.60 48.0
Total 0.80 0.50 1.30 100
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Fig. 12: Multiphase clock generator architecture.
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Fig. 13: Die micrograph, package photo, and mixed-signal floorplan with substrate shields.

scripts and test records documented to support repro-
ducibility and future regulatory submissions.

CONCLUSION

This work presented a self-calibrating mixed-signal
AFE in 180 nm CMOS, integrating a Class-E differential
amplifier, chopper IA/PGA, FDNR-based filters, and a
hybrid SAR-FSM calibration engine for adaptive mul-
timodal signal conditioning. Measured performance
includes 3.4 pVrms input-referred noise, 90 dB dynamic
range, 105 dB CMRR, 75 dB SNDR at 1 kHz/10 mVpp,

and 1.25 pW/channel power. Post-calibration offset is
reduced from 150 pV to 16 pV within four cycles, with
residual 25 pV, 110 ps inter-channel skew, and sta-
ble operation across -40°C to +85°C (gain drift +0.012
dB/°C, offset drift +0.35 pV/°C). Future work targets
in vivo validation, extended drift testing, on-chip ML
for artifact suppression and bias adaptation, scaling
to advanced nodes for higher efficiency, and integra-
tion with multielectrode arrays and wireless telemetry.
These advances will enable loT-ready biomedical SoCs
for continuous monitoring, neurophysiology, and smart
prosthetics.
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