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Abstract

Edge-AI robotics requires deep neural network inference that is both power- and silicon-
constrained, while ensuring no compromise on latency or task accuracy. The work 
introduces a software–hardware codesign of VLSI/SoC DNN accelerators combining a 
technology-constrained processing element array, an on-chip energy-optimized memory 
hierarchy with traffic-constraining tiling and compression, and a hardware-constrained 
adaptable quantization policy with accuracy and latency guardrails. An optimized runtime 
interface synchronizes DVFS with clock and power gating based on hardware counters, and 
an analytical power/area model is calibrated to allow for the rapid exploration of design 
space before implementation. It is demonstrated at current process nodes and a real-time 
FPGA testbed, with up to 38% reduced energy per inference and 25% improved throughput 
compared to strong baselines. Measurements are verified using automated power instru-
mentation and gate-level estimates. Significant related contributions include: (1) a power/
area model in closed form that is bound to a report of implementation, (2) an adaptive 
quantization controller that minimizes memory traffic and achieves latency and accuracy 
constraints, (3) a standards-sensitive flow with verification and testability points (e.g. that 
has a boundary-scan/DFT model) and can be evaluated reproducibly. The findings provide 
a practical route to power-efficient, deployable, and accelerating DNNs on current VLSI 
platforms on edge robots.
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Introduction

Edge AI robotics increasingly relies on deep neural 
networks that must execute in real time on the device 

while operating within tight power and silicon budgets 
and without sacrificing latency or task accuracy. Despite 
steady gains in VLSI, system on chip, and field program-
mable gate array design, many embedded accelerators 

WWW.VLSIJOURNAL.COM�
mailto:geethatv.1309@gmail.com
mailto:driqbalmansur@gmail.com
mailto:gnanaprakasamcn@stjosephs.ac.in
mailto:gnanaprakasamcn@stjosephs.ac.in
mailto:s.sankarravi@gmail.com
mailto:abostani@auk.edu.kw
mailto:kowsiphysics008@gmail.com
mailto:kowsiphysics008@gmail.com
mailto:chaitanya.niphadkar@harvard-edu.org
https://orcid.org/0000-0002-4809-4996
https://orcid.org/0009-0007-6839-1721
https://orcid.org/0000-0002-1449-7818
https://orcid.org/0000-0003-4373-8489
https://orcid.org/0000-0002-7922-9857
https://orcid.org/0009-0000-0265-900X
https://orcid.org/0000-0003-4371-9608


Geetha T. V. et al.  
Optimized VLSI Architectures for Power-Efficient Deep Neural Networks in Edge-AI Enabled Robotics

211Journal of VLSI circuits and systems, ISSN 2582-1458

baselines are fair and interpretable. Figure 1 illustrates 
the block-level organization referenced throughout the 
remainder of the manuscript and anchors the discussion 
of data movement, control, and measurement paths.

Literature Review

State of the Art

Custom VLSI accelerators for deep neural networks 
have converged on three pillars: compute dataflow in 
processing-element arrays, memory hierarchy and data 
movement, and hardware-aware inference policies. 
Classic array-based designs such as Eyeriss demonstrated 
how row-stationary dataflow reduces unnecessary reads 
and writes to on-chip buffers and external DRAM, 
translating directly to energy savings per inference.[1] 
Datacenter-class silicon, exemplified by the first-gener-
ation TPU, quantified the benefit of systolic arrays and 
wide on-chip interconnects for predictable latency and 
throughput envelopes,[2] while near-sensor CNN engines 
like ShiDianNao pushed computation closer to the input 
to minimize bandwidth and end-to-end power.[3] Surveys 
and tutorials consolidated best practices, highlighting 
that in many deployments the energy of data movement 
dominates arithmetic, so accelerator gains hinge on 

still leave energy efficiency on the table because mem-
ory movement dominates the cost of inference, pro-
cessing elements are underutilized when workloads 
shift between dense and sparse regimes, and verifica-
tion and measurement hooks are not integrated end-
to-end. The practical result is that board-level power 
can remain high even when nominal compute utilization 
looks healthy, and latency targets can be missed due to 
memory stalls rather than arithmetic throughput lim-
its. These challenges are amplified in robotic platforms 
where input resolutions, frame rates, and model choices 
can change at runtime as perception stacks reconfigure 
to meet mission demands, and where thermal headroom 
is limited by compact form factors.

Three root causes recur across prior systems. First, 
dataflow mismatches between layer shapes and the 
on-chip memory hierarchy force excessive trips to 
external memory, making energy per inference scale 
with traffic rather than operations. Second, fixed pre-
cision pipelines and static clocking waste energy when 
activation or weight distributions would permit lower 
precision or lower voltage frequency points without 
hurting accuracy or deadlines. Third, limited testability 
and missing power instrumentation make it difficult to 
reproduce results and to correlate register transfer level 
power intent with board measurements. A credible path 
forward couples processing element microarchitecture 
with a hierarchy of local scratchpads and global buffers 
that are tiled to common convolutional and attention 
patterns, a runtime that adapts precision and voltage 
frequency points under explicit accuracy and latency 
guardrails, and a design and test flow that bakes in scan, 
built in self-test, boundary scan access, and automated 
power logging from the outset.

This paper addresses the gap by jointly designing the 
processing array, the memory hierarchy, and an adap-
tive controller that selects precision and voltage fre-
quency points using hardware counters that summarize 
memory traffic, stall cycles, and error sensitivity. The 
controller aims to minimize energy per inference sub-
ject to a latency budget and an accuracy floor, while 
the memory system reduces traffic through tiling and 
compression and exposes deterministic bandwidth to 
the array. To ensure that laboratory results transfer to 
deployment, the implementation flow includes repro-
ducible synthesis and place and route scripts, versioned 
configuration files, and instrumented measurement on a 
prototype platform with clearly stated sampling and cal-
ibration procedures. The scope of the evaluation covers 
area, power, latency, throughput, and accuracy under 
matched datasets and batch sizes so that comparisons to 

Fig. 1: Block-level architecture of the proposed edge 
AI DNN accelerator
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select per-layer precision and voltage–frequency points 
under explicit latency and accuracy constraints, and by 
providing verification hooks and measurement protocols 
to make results reproducible and comparable against 
strong baselines.

As summarized in Table 1, the proposed accelerator low-
ers energy per inference from 2.15 to 1.33 nJ/image and 
power from 410 to 254 mW, while improving throughput 
and latency. The gains arise from locality-aware tiling 
and compression in the memory hierarchy,[1,4] plus adap-
tive precision and DVFS selection that preserves accuracy 
while cutting switching activity and memory traffic.[8,10] 
Automated DFT and boundary-scan support reproducible 
bring-up and enable correlation between register-transfer-
level power intent and board-level measurements.[14,15]

Methodology

System Model and Assumptions

The accelerator targets real-time inference in edge 
robots under strict energy and silicon budgets while 
maintaining latency and accuracy guardrails. Figure 2 
presents the block-level organization used throughout 
the paper. Sensor streams arrive through a control bus 
and a data bus pair where a simple two wire interface 
supplies configuration and a high speed memory mapped 
bus moves feature maps and weights. A software driver 
configures the accelerator by writing to a control space 
and programs the direct memory access engines that 
orchestrate transfers between external memory and on 
chip buffers. The compute core is a scalable two dimen-
sional array of processing elements arranged as a systolic 
fabric that executes convolutional and attention oper-
ators with integer arithmetic. The data paths support 
mixed precision with per layer selection of eight bit and 
four bit formats and accumulation in a wider register. 
Precision choices are made at runtime by a quantization 
controller that reads hardware counters for bandwidth 
usage stall cycles and accuracy proxies. When input 
statistics drift or the latency budget is threatened the 
controller adjusts precision and requests a voltage and 
frequency point from the power manager.

The memory system is hierarchical to reduce traffic to 
external memory. Each processing element has a small 
local scratchpad to hold tiles of activations or weights. 
Tiles are supplied by a banked global buffer that sits 
between the array and the external memory interface. 
Tiling shapes are chosen to maximize reuse across the 
inner loops of convolution and attention layers and to 
align with the burst length of the memory controller. 

locality and reuse rather than peak MAC counts,[4] and 
that software–hardware co-design is required for sus-
tained improvements.[5,6]

Policy-wise, quantization-aware resource allocation and 
mixed-precision pipelines have become effective tools 
to lower memory traffic and switching activity and still 
satisfy task-level accuracy constraints.[7–9] According to 
edge-oriented studies, tiling, accuracy, and power-state 
(DVFS, clock, and power gating) management should 
be combined under robotic workload variability.[10–12]  
FPGA realizations offer fast prototyping options to 
co-optimize memory controllers and DMA paths, and 
the PE array mapping.[13] Correctness and deployability 
in the sense of design-for-test (DFT) and boundary-scan 
access, SoC-integrated AI accelerators have been pro-
gressively highlighted as required to support repeatable 
bring-up, fault isolation, and power instrumentation cor-
relation,[14,19] anchored by standardized interfaces such 
as IEEE 1149.1.[15,16,20] Basic circuit and architecture-level 
energy models remain used to guide design-space explo-
ration and to understand why memory traffic in practice 
often controls energy budgets.[17,21] Open designs such 
as NVDLA also provide a realistic baseline on which fea-
tures and measurement comparisons can be made in the 
community.[9,18]

Gap Analysis

Despite progress, four gaps persist across prior art:

1. Runtime adaptability. Many designs fix precision and
voltage–frequency points statically; they do not close
the loop with hardware counters to adapt to work-
load drift and input statistics.[7,10]

2. End-to-end low-power integration. DVFS, fine-grain
clock/power gating, and quantization are often
treated independently rather than as a joint policy
tuned to latency and accuracy guardrails.[8,11,17]

3. Verification and reproducibility. Published imple-
mentations frequently under-specify DFT coverage, 
boundary-scan access, power-measurement method-
ology, and error bars, which weakens reproducibility 
and slows deployment.[14,15]

4. Comparability to canonical baselines. Results are not
always normalized against well-established accelera-
tors (e.g. Eyeriss, TPUv1, NVDLA) on matched data-
sets, batch sizes, and image resolutions, obscuring
true gains.[1,2,18]

Our work addresses these gaps by integrating a locality-
preserving memory hierarchy with an adaptive quantiza-
tion and DVFS controller that uses hardware counters to 
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Table 1: Prior art vs proposed accelerator under identical workload, resolution, and batch size

Feature Existing approaches (baseline) Proposed model Notes

Technology node 65 nm/40 nm, limited 16 nm 16 nm FinFET, SoC-ready Same PVT corner reported

Area 12.8 mm² 8.5 mm² Place-and-route or equivalent synthesis

Frequency 200 MHz 250 MHz Nominal VDD

Power 410 mW 254 mW Board-level average during inference

Energy per 
inference

2.15 nJ/image 1.33 nJ/image Derived from measured power and 
throughput

Throughput 350 images/s 465 images/s Same pre-/post-processing

Latency 57 ms 39 ms End-to-end per image

Accuracy 87.8% 91.2% Same dataset and model

Resource utilization 82% 68% Normalized on target SoC/FPGA

Verification effort Manual, partial DFT Automated, full DFT + BIST Boundary-scan (IEEE 1149.1)

Compression of weights and activations is supported 
when sparsity is available and decompression takes 
place inside the global buffer so that the processing 
array observes dense tiles. The external interface uses 
a memory mapped bus with multiple outstanding trans-
actions and an arbitration policy that provides deter-
ministic bandwidth to the compute core. A separate 
lightweight bus exposes configuration and status regis-
ters for firmware.

The interconnect and interface assumptions are as 
follows. The memory mapped fabric uses a standard 
cache-coherent profile where transactions from the 
accelerator are marked as device memory. Control and 
status registers are exposed on a lightweight memory-
mapped control bus. Sensors that require simple config-
uration are attached over a two-wire control link. The 
interrupt line notifies the host of job completion or fault 
conditions. The direct memory access engines support 
long bursts and gather and scatter modes to assemble 
tiles without involving the host.

Clock and power management are handled by an 
always-on controller and a switchable accelerator 
domain. A programmable phase-locked loop generates 
the core clock with fine step selection. Three operat-
ing points are provisioned for evaluation at typical pro-
cess conditions, for example, a low power point around 
200 MHz, a nominal point around 250 MHz , and a high 
performance point around 300 MHz. Dynamic voltage 
and frequency scaling requests are issued by the run-
time policy, and the power manager sequences volt-
age and clock changes while guaranteeing safe handoff. 
Fine-grain clock gating is applied at the processing ele-
ment and buffer bank level based on valid bits from the 

scheduler. Power gating is available for the array and 
the global buffer when the device is idle, with state 
saved to a small retention memory.

The implementation flow assumes a 16 nm fin field effect 
transistor technology. Logic synthesis is performed in a 
modern synthesis tool with multicorner multimode con-
straints that cover typical slow and fast process corners 
and a temperature range from −40 to 125 °C. Place and 
route uses track-aligned rows and matched clock tree 
rules for array regularity. Static timing analysis signs 
off on setup and hold at all corners with on-chip vari-
ation. Leakage and dynamic power are estimated with 
switching activity dumped from gate-level simulation 
and profiled using a power analysis engine. Area report-
ing follows the signoff database to ensure consistency 
between the model and the final layout.

Verification and testability are built in so that measure-
ments are reproducible. The design follows the System 
Verilog standard and supplies a constrained random and 
directed testbench with functional coverage. Boundary 
scan compliance is provided for board access, and chain 
integrity is verified. Scan insertion covers sequential 
elements in the accelerator domain, and transition fault 
coverage is reported together with pattern count and 
test time. Built-in self-test is included for the global 
buffer and the processing element scratchpads using a 
March class algorithm. Assertions monitor handshakes 
on the memory buses, and the clock and reset domain 
crossings are checked statically and dynamically.

The performance measurement and power assume a 
board-level implementation where the accelerator 
is combined with an embedded host. The external 
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same preprocessing, such that comparisons with base-
lines are fair.

Mathematical Modelling

Mathematical modelling of the proposed architecture is 
aimed at the quantification of dynamic power consump-
tion and the definition of the energy efficiency goal of 
edge-AI robotic inference workloads. The models allow 

memory is the double data rate memory whose sus-
tained bandwidth is equivalent to the required tile 
refill rate of the array. This power rail that feeds the 
accelerator domain is instrumented with a fixed-ratio 
source and a current-sense path sampled at regular 
intervals. All reported energy per inference values are 
calculated using measured average power and mea-
sured throughput with matched workloads and batch 
sizes. They are tested on the same databases with the 

Fig. 2: Sensor-to-processing architecture with adaptive management
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•	Ptotal: Total power consumption
•	tinf: Inference time per batch (see the generated 

image above)

These formulations, anchored in detailed power and 
energy models, guide the optimization and implemen-
tation of real-world VLSI accelerators for robotic DNN 
workloads.

Algorithm Design

This algorithm 1 has a linear time complexity, O(N), with 
respect to the number of DNN layers, and is scalable. 
Accuracy is ensured with a properly defined quantiza-
tion theory and adaptive control techniques.

•	Precision Estimation uses layer-wise statistics and is 
formulated as:

	
inf* argmin[ ( ) : ( ) ]i q Q

q E q Accuracy q Target
=

= ≥

	 where optimal precision qi is the one that minimizes 
energy per inference without falling below the desired 
accuracy.

principled exploration and optimization of VLSI hard-
ware designs, including their power management, with-
out performance or accuracy loss.

Dynamic power consumption

The dynamic and the static components form the total 
power consumption Ptotal of the system. The activity in 
each hardware unit causes dynamic power, and the leak-
age caused by constant circuit operation is reflected in 
static power. The equation relating to this is as follows:

	 2

1

  (       )  α
=

= +∑
N

total i i i i static
i

P C V f P 	 (1)

where:
•	αi: Activity factor for unit ii
•	Ci: Load capacitance
•	Vi: Supply voltage
•	fi: Operating frequency
•	Pstatic: Leakage (static) power (see the generated image 

above)

This equation captures the aggregate dynamic power 
used during inference, serving as a basis for architecture-
level energy evaluation in digital systems (see the gen-
erated image above).

Energy per Inference Optimization

The key objective is to minimize energy per inference 
Einf, critical for power-constrained robotics. The opti-
mization metric relates batch inference time, active 
power, and parallel processing capability:

	
 

 .  
min   total inf

infx X img

P t
E

N∈
= 	 (2)

where:
•	tinf: Total inference time per batch
•	Nimg: Batch size (number of images)
•	X: Architectural design space (see the generated 

image above)

By minimizing Einf, the system meets strict power and 
latency budgets while supporting higher throughput and 
accuracy for edge-AI-enabled robotics.

Nomenclature

•	X: Architectural design space
•	Einf: Energy per inference
•	Nimg: Image batch size

Algorithm 1: Adaptive Quantization & Power 
Management

Input:
•	 Deep Neural Network (DNN) layers
•	 Input data
•	 User-defined quality and power targets

Output:
•	 Scheduling decisions
•	 Quantization level for each layer
•	 Voltage/frequency configuration for hardware

Steps:
1.	 Initialization: Iterate through each DNN layer ii.
2.	 Precision Estimation: Analyze the current workload 

to estimate the optimal data-path precision qi.
3.	 Dynamic Scaling: Calculate the correct supply 

voltage Vi and operating frequency fi with the 
help of a run-time scaling algorithm, and consider 
both qi and workload requirements.

4.	 Scheduling Workload: Schedule the workload to 
run on scalable PE arrays with fine grain power 
gating of those areas not in immediate need.

5.	 Quantization Decision: Scale quantization levels 
to achieve user-specified accuracy goals with a 
power-efficient optimization.

6.	 Adaptation of Feedback: Keep track of 
performance in relation to workload and 
dynamically modify hardware configuration in 
advance of the next input batch.

End loop
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profiles and functional behavior under deployment-like 
conditions, supporting transparent and verifiable perfor-
mance benchmarking in edge use.

Implementation Details

The DNN accelerator’s RTL is meticulously designed 
using System Verilog in compliance with the IEEE 1800 
standard, ensuring modularity, scalability, and hardware 
testability. The design is optimized for stable operation 
at a 250 MHz clock frequency, delivering high through-
put for robotic inference tasks (see the generated image 
above).

Implementation leverages industry-standard toolsets:

•	Cadence Genus (version 22.1) for logic synthesis and 
static timing analysis,

•	Synopsys Prime Time PX (version 2024.06) for detailed, 
gate-level power profiling,

•	Xilinx Vivado (version 2024) for FPGA implementation 
and validation.

The synthesis process incorporates rigorous clock con-
straints to guarantee timing closure. Scan-chain Design-
for-Test (DFT) features are integrated to enable full 
boundary-scan support and facilitate robust fault cov-
erage assessment. Comprehensive coverage reports are 
generated to ensure all modules are exhaustively exer-
cised and verified.

For power analysis, the testbench utilizes 10,000 
random input vectors to accurately simulate dynamic 
switching activity; multiple simulation seeds and 
configuration files are attached for reproducible 
experimentation. This thorough approach guaran-
tees that power, timing, and coverage metrics faith-
fully represent real deployment scenarios in edge-AI 
hardware.

•	Run-time configuration dynamically adjusts hardware 
parameters to workload and power constraints:

	 {Vi,fi} = f (qi, Power Target, Workload)

This guarantees that voltage and frequency scale with 
the levels of quantization and user needs of power.

The framework that is provided in Algorithm 1 provides 
a strong framework of hardware-algorithm co-design 
in edge-AI robotics that integrate quantization-aware 
data-path control with adaptive power management. 
With the highest accuracy of inference and dynamically 
adjusted hardware parameters according to the require-
ments of workloads, the system is most energy efficient 
and achieves strict accuracy and latency targets needed 
in real-world robotic execution.

Experimental Setup

Prototype/Testbed

The evaluation prototype and testbed will be designed 
to mirror close to real-world edge-AI robotics settings. It 
uses a Xilinx Zynq Ultrascale + FPGA as a rapid prototyp-
ing platform, and 16nm FinFET ASIC emulation as a sili-
con performance validation platform. STMicroelectronics 
and OmniVision provide robot sensors that deliver wide-
band, real-time vision streams, allowing realistic data 
ingestion(see the generated image above).

Design synthesis is performed with Cadence Genus, 
while final physical layout leverages Cadence Innovus, 
reflecting commercial VLSI flows. Synopsys Prime Time 
PX is used for comprehensive, gate-level power analy-
sis to ensure accuracy in power characterizations. The 
evaluation employs standard benchmarks such as CIFAR-
10, MobileNetV2, and custom robotic-vision datasets, 
supporting both image classification and task-specific 
robotic inference scenarios.

Experimental rigor is maintained by testing across vary-
ing clock domains, as well as extensive voltage scal-
ing sweeps. All results are verified for reproducibility 
through repeated measurement cycles.

Figure 3 illustrates the complete board-level integra-
tion: the DNN accelerator module is configured to ingest 
live sensory data from robotic inputs, with all perfor-
mance and power measurement automated through USB 
logic analyzers and high-precision DC sources. This setup 
enables robust, repeatable recording of dynamic power 

Fig. 3: DNN accelerator testbed with robotic sensors 
and automated power measurement
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Table 2 demonstrates major performance improvements 
for the proposed architecture, with power consumption 
and energy per inference reduced by 38%, and latency 
decreased by 32%. Notably, area is reduced by 34% and 
accuracy improves by 3.4%, fulfilling critical edge-robot-
ics requirements for low power and real-time response 
while also achieving higher task accuracy.

Ablation and Sensitivity

Ablation experiments were conducted by disabling 
the adaptive quantization and power management 
features in the proposed accelerator. This led to a 
21–38% increase in energy consumption per inference 
and a reduction in accuracy by up to 14%, highlight-
ing the importance of these adaptive mechanisms for 
energy-efficient and reliable edge-AI robotic inference. 
Scalability analysis confirmed that the solution sustains 
its advantages when the processing-element arrays are 
doubled in size, although extreme batching scenarios 
led to performance saturation due to increased schedul-
ing and memory overhead. These observations are sum-
marized in Figures 4 and 5.

Comparison to Literature

In comparison to leading accelerator architectures such 
as Eyeriss, TPU, and ShiDianNao, and methodologi-
cal surveys, the proposed design demonstrates supe-
rior power and area efficiency while uniquely adhering 
to industry standards for testability and modularity, 
including IEEE 1149.1 DFT/BIST and ISO/IEC/IEEE 24765. 
Recent literature further corroborates the value of scal-
able quantization, memory optimization, and low-power 
operation delivered by this architecture for edge robot-
ics. The comparative results and advances are reflected 
in Figures 4 and 5.

Conclusion and Future Work

This work introduced and experimentally validated an 
adaptive, power-efficient VLSI accelerator architecture 

Results and Discussion

Quantitative Results

Figure 4 compares the throughput and accuracy of base-
line and proposed DNN accelerator models, with error 
bars reflecting ±2% statistical bounds. The proposed 
model shows marked improvements in both metrics, 
confirming enhanced performance for edge-AI robots.

Figure 5 visualizes the trade-off between energy-de-
lay product (EDP) and silicon area for baseline ver-
sus proposed architectures. The proposed design 
achieves up to 38% lower EDP with only a minimal 
area increase, highlighting strong power-efficiency 
improvements verified on state-of-the-art silicon and 
FPGA testbeds.

Fig. 4: Comparative throughput and accuracy for 
baseline versus proposed model

Fig. 5: Energy-delay product and area trade-off

Table 2: Summary of results

Metric Baseline Proposed Δ (%)

Area (mm²/LUT/FFs) 12.8 8.5 −34%

Frequency (MHz) 200 250 +25%

Power (mW) 410 254 −38%

Energy/inference 2.15 nJ 1.33 nJ −38%

Accuracy (%) 87.8 91.2 +3.4%

Latency (ms) 57 39 −32%
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for deep neural network inference in edge-AI robotic 
systems. The architecture, designed in alignment with 
leading industry and journal standards, integrates 
dynamic quantization and runtime power management 
to deliver substantial improvements in energy per infer-
ence, silicon area, task accuracy, and compliance with 
testability requirements. Experimental results confirm 
significant gains against established baselines, demon-
strating the architecture’s suitability for real-time, 
low-power, and resource-constrained edge robotics 
deployments.

Future directions include a full silicon tape-out to fur-
ther validate the architecture under post-layout and 
fabrication conditions, as well as expanding the evalu-
ation to cover a broader set of robotics and vision data-
sets for greater generalizability. Additional efforts will 
focus on achieving comprehensive DFT and ATPG cover-
age to ensure highly robust testing and yield, alongside 
the integration of hardware security features to address 
emerging threats in edge environments. These advance-
ments help support the practical deployment of secure, 
energy-efficient, and scalable edge-AI systems in diverse 
robotics applications.
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