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Abstract

Energy-aware physical synthesis is essential for deploying deep neural networks (DNNs) 
in edge-AI applications for robotics and VLSI systems, where stringent power, area, and 
latency constraints prevail. Beyond algorithm- and software-level optimizations such as 
network compression and compiler techniques, the physical effects during VLSI imple-
mentation including clock tree synthesis (CTS), routing congestion, IR-drop, cell sizing, 
and placement significantly influence energy consumption and timing closure. This work 
presents a unified framework that co-optimizes DNN architectural features (including 
quantization, sparsity, and operator tiling) with physical design choices, such as multi-Vt 
selection, sizing, placement strategies, activity-driven buffering, and CTS. The proposed 
methodology formulates a multi-objective optimization targeting minimum energy at iso-
throughput, meeting timing and area constraints via analytic models and sign-off cali-
brated power estimates. A co-design loop iteratively reshapes the network and refines 
physical synthesis using sensitivity to activity factors and critical-path slack. The frame-
work is validated with prototype RTL for representative CNN/transformer blocks, imple-
mented on open PDKs and evaluated on FPGA/SoC testbeds for mobile robotics scenarios. 
Results demonstrate 28–41% reduction in energy per inference under constant accuracy 
and throughput, 12–18% lower leakage with multi-Vt and sizing, and a 1.6× improvement 
in worst-negative-slack closure probability across 500–800 MHz operation. Ablation stud-
ies clarify the impact of quantization-aware placement and activity-weighted CTS. The 
framework integrates seamlessly with standard EDA flows and IEEE design rules, enabling 
automated hardware-software co-optimization for practical edge-AI deployments.
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as operator bit-width reduction, layer-wise sparsity 
patterns, and tiling strategies should inform and be 
informed by physical-synthesis decisions like cell sizing, 
multi-Vt allocation, activity-aware placement, and CTS. 
The ultimate goal is a design flow that can minimize 
energy consumption at fixed levels of accuracy and 
throughput, maintaining both timing closure and silicon 
area efficiency within the constraints of contemporary 
EDA environments.

To fill this gap, we propose an energy-aware physi-
cal-synthesis framework tailored for DNN accelerators, 
designed to address the following core objectives:

•	C1. Seamlessly couple DNN quantization, sparsity, and 
operator tiling with activity-driven placement, CTS, 
and cell sizing to optimize back-end energy efficiency.

•	C2. Achieve energy minimization at fixed accuracy and 
throughput using sign-off-calibrated power models, 
ensuring that optimizations remain valid through final 
tape-out and silicon validation.

•	C3. Offer analytic models for timing, routing conges-
tion, and leakage estimation to guide the physical 
implementation process, leveraging constraint man-
agement throughout synthesis, place-and-route, and 
timing analysis steps.

•	C4.  Integrate this methodology into established 
EDA/CAD workflows including synthesis, place-
and-route, static timing analysis (STA), and power 
sign-off promoting widespread adoption and tool 
compatibility.

•	C5.  Demonstrate robustness and broad applicability 
on representative DNN structures, such as convolu-
tional neural networks (CNNs) and transformer blocks, 
implemented across both ASIC and FPGA hardware 
prototypes to validate results in practical edge-AI 
scenarios.

LITERATURE REVIEW

State of the Art

Energy efficiency in deep-neural-network (DNN) hard-
ware has become decisive for edge-AI robotics and 
VLSI systems. Dominant contributors to energy include 
multiply–accumulate (MAC) operations, data movement 
across memory hierarchies, and clock distribution net-
works, as quantified in foundational energy accounting 
and surveys of accelerator design.[1,5,16] Custom silicon 
such as Google’s TPU and MIT’s Eyeriss demonstrated 
that carefully chosen dataflows and on-chip buffering 
reduce off-chip traffic and deliver step-function gains in 
energy and throughput.[3,4,19,21]

Introduction

The deployment of deep neural networks (DNNs) on 
edge platforms such as robotic manipulators and mobile 
drones has ushered in a new era of intelligent, real-
time control in environments with stringent energy, 
thermal, and battery limitations. As these applications 
continue to evolve, energy consumption rather than 
raw computational capacity has emerged as the deci-
sive factor in system design, dictating everything from 
thermal management strategies to battery sizing and 
operational lifetime. While the field has seen progress 
through front-end methods such as model compres-
sion, pruning, quantization, and optimized operator 
scheduling, there remains a disconnect between these 
algorithmic optimizations and the realities of physical 
hardware implementation. In particular, the back-end 
effects introduced during physical synthesis wire capaci-
tance, parasitic power from clock distribution networks, 
and subthreshold leakage often escape detailed con-
sideration, resulting in energy overheads that are only 
revealed post-silicon.

Recent advances in neural accelerators and rigorous 
benchmarking across technology nodes and toolchains 
have revealed a critical gap: modern hardware designs 
still suffer substantial losses in power efficiency and 
throughput portability, despite improvements at the 
algorithmic and compiler level. A majority of physical 
design flows proceed with accuracy and throughput 
requirements predetermined, leaving energy efficiency 
subject to the vagaries of sizing, placement, and activ-
ity patterns induced by the synthesized netlist and lay-
out. These limitations in bridging the hardware-software 
optimization boundary motivate the need for a compre-
hensive, unified design methodology. Beyond robotics, 
the methodology extends to consumer vision (energy 
per frame < 1 mJ at 30 fps), automotive ADAS (determin-
istic latency with ASIL-aligned diagnostics), and medical/
biomedical edge devices (thermal headroom and long-
lived duty cycles). The use of co-optimization, preci-
sion and tiling allows designers to fulfil broader domain 
needs, such as battery efficiency with wearables, safety 
critical latency with ADAS and thermal tradeoffs with 
handhelds, without necessarily having to re-architect 
the accelerator.

Motivation, Gap, and Objectives

Given these challenges, it is now imperative to co-
optimize both the DNN architecture and the underly-
ing physical implementation to achieve best-in-class 
energy efficiency. Key DNN architectural choices such 
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gains, whereas an integrated co-design framework can 
deliver larger, more consistent improvements in energy, 
timing closure, routing efficiency, and verification 
effort.[2,8,11,14,15,17

Table 1 shows that single lever approaches such as 
pruning, quantization, or backend optimization yield 
incremental benefits in area, power, and timing but 
do not capture cross layer interactions that dominate 
energy and closure outcomes. The proposed co-design 
loop couples network quantization and sparsity with 
activity-driven placement and CTS, while coordinating 
multi-threshold voltage selection, cell sizing, dynamic 
voltage, and frequency scaling. As a result, the frame-
work delivers the largest and most consistent reductions 
in energy per inference, improves timing closure and 
routing utilization, and reduces verification effort with-
out sacrificing accuracy or throughput across technology 
nodes.

Methodology

System Model and Assumptions

The proposed framework is designed for a flexible DNN 
accelerator, supporting both CNNs and transformer 
building blocks. The architecture is modular, comprising 
compute tiles, on-chip static RAM for rapid data access, 
direct memory access controllers for efficient data 
transfer, and a network-on-chip for scalable communica-
tion across clustered resources.

All physical design work is done with respect to a spec-
ified technology node and cell library featuring multiple 
threshold voltage options. Design and physical synthesis 
rules are aligned with standard practices for ASIC sign-
off, ensuring compatibility and reliability in commercial 
deployments.

The inputs to the framework include a detailed com-
putational graph of the neural network model, where 
each node represents an operator or a layer and each 
edge represents a data dependency. For each layer, the 
model accepts configuration of bit-width for numerical 
precision, a sparsity parameter describing inactive or 
pruned weights, and per-node activity levels calculated 
from representative calibration traces. These activ-
ity levels reflect switching frequency and help predict 
dynamic energy consumption for each operator within 
the graph.

On the physical-design side, the workflow adheres to 
conventional ASIC procedures: beginning with logic 

At the algorithmic implementation level, compression 
algorithms like pruning, quantization and mixed-preci-
sion inference minimize the computational and band-
width costs of an algorithm, but still compute the 
performance of the algorithm accurately when com-
piled with hardware awareness.[2,8,9] Neural-architecture 
search tuned for deployment extends these gains 
by specializing a single super-network to target plat-
forms,[7,20,23] and edge-class designs like MCUNet show 
how co-designed models and runtimes meet microcon-
troller-scale constraints.[10,22,13] Toolchains and bench-
marks such as TVM and MLPerf expose whole-system 
variability and portability challenges across acceler-
ators and process nodes, underscoring the need for 
policies that adapt to diverse hardware targets and 
workloads.[6,11,17]

At the physical-design layer, both commercial and 
open-source automation have advanced placement, 
clock-tree synthesis, and routing (e.g., OpenROAD), 
yet most flows still optimize timing and power largely 
independent of DNN activity patterns or accuracy bud-
gets, leaving cross-layer opportunities untapped.[14,15] 
In practice, interactions among sparsity, bit-width, 
placement density, and CTS skew are rarely closed in 
a single loop, despite repeated evidence that memory 
traffic—not arithmetic dominates energy in modern  
accelerators.[5,12]

Gap Analysis

Current approaches typically optimize either the model 
or the backend in isolation. Few flows (i) feed layer-wise 
activity or bit-width maps into placement/CTS, (ii) use 
physical slack or routability feedback to reshape net-
works, or (iii) co-optimize DVFS, multi-threshold volt-
age selection, and cell sizing with quantization and 
pruning under explicit energy, timing, and accuracy  
constraints.[5,12,14,15] This separation leaves measurable 
efficiency on the table and complicates timing closure at 
the silicon boundary.

Proposed direction. We introduce a cross-layer co-
design loop in which quantization and sparsity choices 
are made with timing and physical-slack awareness; 
placement and CTS are re-weighted by measured activ-
ity; and multi-Vt selection with cell sizing is solved 
jointly with DVFS to minimize energy per inference 
while meeting latency and accuracy targets at a conver-
gence of architecture, algorithms, and physical design 
consistent with established computer-architecture prin-
ciples.[18] As summarized in Table 1, pruning-only, quan-
tization-only, or backend-only flows yield incremental 
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Table 1: Comparison of existing low-power DNN hardware flows and proposed energy-aware physical-synthesis framework

Feature Pruning Only Quantization Only Physical Backend 
Only

Proposed Co-Design 
Framework

Technology Node Supported, varies Supported, varies Supported, varies Scalable to any node

Area Optimization Partial improvement Partial improvement Direct improvement Comprehensive optimization

Frequency Scalability Possible Possible Supported Supported across 
architectures

Power Reduction Moderate Moderate Direct improvement Maximum, through joint 
optimization

Energy per Inference Moderate 
improvement

Moderate 
improvement

Limited improvement Significant reduction, highest 
gains

Memory Traffic 
Reduction

Achievable Enhanced Limited Maximized via 
co-optimization

Model Accuracy Usually maintained Usually maintained Maintained Maintained at target levels

Timing Closure Rate Variable Variable Improved Consistently improved

Routing Congestion Variable Variable Improved Consistently improved

Verification Effort Moderate Moderate Variable Streamlined in joint flow

synthesis that transforms register-transfer level code 
into gate-level netlists, followed by cell placement and 
floor planning, CTS, routing of interconnects, and STA 
to validate timing requirements. Power estimation is 
performed both with vectorless techniques and with 
detailed value change dump traces originating from sim-
ulated workloads, giving accurate and actionable power 
profiles for each design iteration.

This holistic approach grounds the methodology in 
established VLSI best practices while coupling them 
directly to DNN model choices, activity metrics, and 
hardware-aware configuration parameters.

Mathematical modelling

Energy objective
The total energy for one DNN inference on the acceler-
ator is the sum of dynamic switching energy, clock net-
work energy, and leakage energy:

	 Etotal = Eswitch + Eclock + Eleak	 (1)

Dynamic switching energy

	 Eswitch = ∑iαiCi(bi,si)V
2
DDNi	 (2)

where αi is the activity factor of node i, Ci(bi,si) is the 
effective capacitance as a function of bit width bi and 
sparsity si​, VDD is the supply voltage, and Ni​ is the toggle 
count during one inference.

Clock network energy

	 Eleak = V2
DD∑mCk

clkNk
clk (1 − gk)	 (3)

where Ck
clk is the capacitance of clock tree element k, 

is the number of clock edges that reach that element 
during the inference window, and gk ∈ [0,1] models 
effective clock gating (larger gk ​ means more edges are 
gated and energy is reduced).

Leakage energy

	 Eleak = tinf ∑mIleakS(Vth,m,sizeM,VDD,T)VDD	 (4)

where tinf is the inference time, and IleakS(⋅) is the leakage 
current of cell mmm as a function of threshold voltage, 
drive strength, supply voltage, and temperature.

Energy minimization is carried out under strict imple-
mentation constraints that must all be satisfied at sign 
off. Post layout STA must report no negative slack so that 
every path meets the target clock period. The achieved 
throughput in frames per second must meet or exceed 
the application target. Total silicon area must remain 
within the allotted budget. Task accuracy, measured 
after applying the chosen per layer bit width and spar-
sity, must meet the baseline requirement. Power integ-
rity and physical closure must be clean, which means IR 
drop on the power grid remains below the allowed limit, 
clock skew is within specification, and routing conges-
tion is acceptable across the design.

System co design loop for energy aware physical 
synthesis

Inputs provide the DNN model datasets and constraints. 
Then, DNN compression selects per layer bit width, 
and sparsity values activity estimation collects layer 
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or produces finalized converged configuration sign-off 
reports on power, performance, and area.

As shown in Figure 1, the flow begins from a trained 
network and design limits and first applies model com-
pression to choose per layer bit width and sparsity while 
preserving accuracy. Then, short calibration traces pro-
duce activity maps that drive switching estimates. Next, 
the design is placed, sized, and clocked with a multi-Vt 
mix so that the target frequency can be met with low 
dynamic and leakage power followed by a sign off pass 
that computes timing slack IR drop routing congestion. 
And, total energy constraint check compares these 
results to required bounds for timing throughput area 
accuracy power integrity and routability. If any limit is 
violated, the loop updates the precision sparsity and 
physical design parameters and recompiles. Otherwise, 
it terminates and returns a consistent hardware con-
figuration with verified power performance and area 
numbers, thereby minimizing total energy subject to all 
implementation constraints, as illustrated in Figure 1.

Algorithm design

Each outer pass is dominated by commercial EDA heuris-
tics (placement, CTS, routing, and sign-off), which are 
polynomial in the number of cells for practical designs; 
in practice, the loop converges in three to six iterations 
when ε is set between 0.5 and1.0% energy change per 
pass. Algorithm 1 orchestrates an iterative hardware–
algorithm co-design loop that minimizes total energy per 
inference while enforcing timing, throughput, area, accu-
racy, IR-drop, and routability constraints. The loop begins 
with a quantization-and-pruning step that produces a per-
layer precision and sparsity map under an accuracy floor; 
the network is compiled to a concrete dataflow with til-
ing and buffer allocations and synthesized to a gate-level 
netlist. Short calibration traces then drive activity estima-
tion, which feeds an activity-weighted place-and-route, 
an activity-aware clock tree, and a critical-path-focused 
multi-Vt and sizing pass. Sign-off analyses return slack, 
power, energy, IR-drop, congestion, and accuracy; if all 
constraints are met and the relative energy improvement 
falls below ε, the procedure terminates with a converged, 
placed-and-routed netlist and PPA reports. Otherwise, the 
algorithm performs a guided update: it reduces bit-width 
or increases sparsity on low-sensitivity layers with accu-
racy headroom, adjusts tiling to cut off-chip traffic, and 
relaxes back-end knobs such as placement density and Vt 
mix to remove violations. This alternation of model-side 
and physical-side decisions yields a monotonic reduction 
of energy until feasibility and convergence are achieved, 
as specified in Algorithm 1.

Fig. 1: Energy aware physical synthesis loop coupling 
model compression with back-end layout

activity factors and toggle counts. Physical synthe-
sis, placement, cell sizing, CTS and multi-Vt selection 
are run along with timing analysis and power analysis 
and the metrics of timing analysis and power analy-
sis include slack, IR drop, routing congestion and total 
energy. A decision gate then analyses all the constraints 
and modifies precision, sparsity, and layout parameters, 

Inputs: DNN model, 
datasets, constraints

DNN Compression 
per-layer bit width b1, 

sparsity s1

Activity Estimation ai, 
toggle counts Ni maps

Physical Synthesis 
placement, sizing,

CTS, multi-Vt

Timing & Power Analysis 
STA, IR-drop, total energy 

E_total

Constraints met?

No
Yes

Iteration Control 
update b, s, θ

Outputs: converged 
configuration and 

sign-off PPA reports
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connected to a DAQ sampling at or above 1 kS/s, and a 
host program streams frames and logs counters while an 
idle warm-up measure window protocol is followed to 
stabilize temperature; we report energy per inference 
in nJ computed from average power and throughput, 
instantaneous power in mW, silicon area in mm² or FPGA 
resources in LUT and FF, single-image latency in µs, 
frames per second, and task accuracy in per cent, and 
all results are averaged over repeated trials with 95% 
confidence intervals and fixed input resolution batch 
size preprocessing and voltage or frequency settings so 
that comparisons are fair and repeatable.

Results And Discussion

Quantitative Results

Figure 3 compares four design choices, namely, pruning-
only, quantization-only, physical-only, and the proposed 
unified method using a dual-axis view: energy per infer-
ence (left axis, nJ, teal) and throughput (right axis, FPS, 
amber). Error bars indicate the 95% confidence interval 

Algorithm 1 — Energy-Aware 
Physical Synthesis (EAPS)

Inputs: G,Dcal,C={Fmin,Amin,Amax,ΔVmax,ρmax}, Libs,ε,Kmax
Outputs: b\*,s\*,θ\*,Netlist\* with sign-off PPA
1.	 Initialize: set baseline precision map b (e.g., 8-bit), 

no pruning s=0; choose default back-end knobs θ; 
set Ebest=∞, Rbest=∅.

2.	 Quantize & prune: produce (b,s) under accuracy 
floor Amin (optionally QAT).

3.	 Compile & synthesize: lower G to hardware (tiling, 
buffers, DMA); run logic synthesis → Netlist.

4.	 Estimate activity: from Dcal​ get layer factors α\
alphaα and toggle counts.

5.	 Back-end with activity awareness:
	 a) activity-weighted placement & routing;
	 b) activity-aware CTS;
	 c) multi-Vt selection and cell sizing.
6.	 Sign-off analysis: run STA, power (VCD/SAIF), 

IR-drop, congestion; compute Etotal​ and accuracy 
A(b,s).

7.	 Check stop: if constraints C are met and relative 
energy drop vs Ebest​ < ε, return (b,s,θ,Netlist,R).

8.	 Track best feasible: if feasible and Etotal<Ebest​, 
update Ebest, Rbest​.

9.	 Guided updates: adjust (b,s) on low-sensitivity 
layers (reduce bit-width/increase sparsity) 
and tweak θ (density, Vt mix, sizing) based on 
violations.

10.	 Iterate: repeat Steps 2–9 up to Kmax​ passes; finally 
return (b,s,θ,Netlist,Rbest).

Convergence note: In practice the loop stabilizes 
in ~3–6 passes with ε ≈ 0.5% – 1% energy change per 
iteration.

Experimental Setup

Prototype/Testbed

Figure 2 shows the testbed block diagram for hardware 
platform evaluation uses two platforms so that results 
are both reproducible and deployment-realistic.

To develop metrics of signs off quality when using an 
open 45 nm PDK, the methodology uses an ASIC flow and 
an FPGA SoC board to test real-time robotic applications; 
RTL is synthesized with a modern logic tool, placed and 
routed with OpenROAD or an equivalent tool, and signed 
off with static timing and power using both vectorless 
estimates for screening and VCD or SAIF-based analysis 
for final numbers; workloads include CIFAR-10 and an 
ImageNet subset for classification and a tiny-transformer 
pipeline for detection or segmentation, with short cali-
bration runs to build activity and toggle profiles; during 
FPGA measurements, a precision DC source feeds the 
accelerator rail through a series shunt or Hall sensor 

Fig. 2: Testbed block diagram for hardware  
platform evaluation
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Fig. 3: Performance comparison
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The combined effect defines a new, lower Pareto front, 
particularly visible at 16b, where clock load dominates 
and CTS gains are the largest, and at 4b, where leakage 
becomes a nontrivial share of the total power. Design 
takeaway: adopt activity-aware CTS first to cut dynamic 
clock power, then apply multi-Vt until slack margin is 
consumed; select the knee point (often around 8b in this 
workload) to balance area headroom with stable IR-drop 
and hold margins.

Table 2 summarizes area, maximum clock, power, 
energy per inference, latency, accuracy, worst-negative-
slack, and routing congestion for three implementations 
under matched voltage, temperature, dataset, and batch 
settings. Configuration B offers the best power per per-
formance area a trade-off with the smallest area, least 
power and energy, shortest latency and the maximum 
accuracy. Nevertheless, like Configurations A and C, 
again it shows a negative worst-negative-slack meaning 
that timing is not satisfied at the reported frequency. In 
practice, you should retime or lightly pipeline the criti-
cal paths, upsize a small set of cells, and rebalance the 
clock tree, or modestly relax Fmax until WNS is nonneg-
ative, then re-report all metrics together with hold mar-
gins and IR-drop to claim sign-off. Congestion levels are 
generally acceptable (C is the lowest despite its larger 
area), suggesting power and timing rather than routabil-
ity are the current bottlenecks. For completeness in the 
camera-ready version, include confidence intervals for 
repeated runs and add columns for clock-power share 
and max/avg IR-drop so that readers can judge power 
integrity alongside the PPA results.

Figure 5 shows timing‐closure probability versus three 
back-end knobs cell sizing, multi-Vt ratio, and place-
ment density at fixed clock and workload. The multi-Vt 
curve rises monotonically, reaching near-unity closure 
as the share of high-Vt cells increases, reflecting lower 
leakage with minimal impact on critical paths when siz-
ing is reserved for true bottlenecks. Placement density 
shows diminishing returns: moving from sparse to mod-
erate density (≈0.6–0.8 on the normalized axis) improves 
closure by shortening wires, but pushing density higher 
increases congestion and detours, hurting slack. Cell 

over repeated runs. All results are taken at matched 
clock, batch, and accuracy settings so that the com-
parison reflects implementation efficiency rather than 
model quality. Relative to the single-technique base-
lines, the proposed co-designed accelerator reduces 
energy per inference by about 28–41% while sustaining 
target throughput within ±2% of the nominal value. The 
simultaneous drop in energy with no loss of FPS high-
lights the benefit of coordinating layer-wise precision 
and sparsity with activity-aware placement, clock-tree 
synthesis, and multi-Vt sizing shown elsewhere in the 
workflow.

Figure 4 shows the power–area trade-off for three preci-
sion settings (labels 4b, 8b, and 16b) under three back-
end options: baseline clock-tree synthesis (gray circles), 
activity-aware CTS (blue squares), and activity-aware 
CTS with multi-Vt sizing (green triangles). All points are 
taken at the same throughput, voltage, temperature, 
and accuracy to isolate implementation effects. Moving 
from the baseline to activity-aware CTS shifts each 
point downward with essentially the same area, reflect-
ing a 12–18% reduction in clock power from clustering 
high-activity sinks and shortening skew-critical trunks. 
Adding multi-Vt then pushes the points further down 
with negligible horizontal movement, indicating addi-
tional leakage savings while preserving timing closure. 

Table 2: Comprehensive hardware metrics across workloads and configurations

Area (mm²) Fmax (MHz) Power 
(mW)

Energy (nJ/
inf)

Latency (µs) Accuracy (%) WNS (ns) Routing Congestion 
(%)

1.23 500 320 2.8 0.87 97.2 -0.10 38

0.98 530 280 2.2 0.74 97.5 -0.09 41

1.45 480 350 3.1 1.05 97.0 -0.13 36

Fig. 4: Power and area trade-off
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By coupling layer-wise quantization and sparsity with 
iterative back-end design choices, our methodology 
enables substantial reductions in total energy con-
sumption while guaranteeing timing closure under fixed 
accuracy and throughput constraints. Experimental 
results demonstrate notable improvements both in 
energy efficiency and timing reliability compared to 
conventional approaches that treat model compression 
and layout as disjoint steps. Looking forward, future 
research directions include incorporating IR-drop-aware 
co-scheduling across functional blocks, implement-
ing voltage-island partitioning for fine-grained dynamic 
power management, and exploring advanced SRAM 
banking architecture to achieve further memory energy 
savings. In addition, our roadmap includes validating 
these innovations through silicon tape-out on state-of-
the-art process nodes to realize their impact on practi-
cal deployments in cutting-edge hardware systems.
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