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Abstract

An arithmetic logic unit (ALU) is the core component for any processing unit to perform 
arithmetical and logical operations for modern computing. The design for ALUs for spe-
cific tasks, including integer and floating-point arithmetic, logical operations, data move-
ment, and control functions, influences the CPU architecture and digital system design. 
This work presents a unified ALU implemented in Verilog hardware description language 
(HDL), capable of performing arithmetic and logic operations across diverse numerical rep-
resentations. The ALU is engineered to integrate logic unit, signed arithmetic processor, 
unsigned arithmetic processor, and floating-point arithmetic processor. The selection of 
operation is governed by select line signals to facilitate versatile user-driven functionality 
at the hardware level. To enhance the computational efficiency for handling multiplica-
tion of 64-bit signed and unsigned operands which generates a 128-bit result, the pro-
posed ALU architecture employs parallelism by processing the most significant and least 
significant bits simultaneously. A flexible mechanism for selective output enables the user 
to extract the desired segment of the result. By consolidating floating-point and fixed-
point computations within a single ALU instance, the proposed architecture reduces the 
silicon area with reduced power dissipation and computational latency while streamlin-
ing routing complexities. This multimodal ALU design with high throughput is particularly 
suited for deployment in heterogeneous computing environments such as general-purpose 
processors, cryptographic accelerators, and machine intelligence hardware, where the 
rapid processing of heterogeneous data types is essential for workload optimization and 
energy-efficient system operation.
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Introduction 

An arithmetic logic unit (ALU) is an indispensable com-
ponent of modern computing systems, as it serves as 
the fundamental processing unit for arithmetic and 
logic operations. It enables the central processing unit 
(CPU) to execute arithmetic operations like addition, 
subtraction, multiplication, and division along with log-
ical operations like AND, OR, XOR, and XNOR. ALU for 
fixed-point operations offer power-efficient and faster 

computation with efficient hardware utilization for 
resource-constrained environments like IoT devices, 
consumer electronics, and automotive control systems. 
However, to support numerical accuracy for scientific 
computations and complex mathematical operations for 
IoT systems and high-performance computing,[1] ALUs 
are designed to precisely handle real numbers with frac-
tional components. Moreover, modern computational 
needs for machine learning implementation systems 
require to consolidate fixed-point and floating-point 
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Another energy-efficient FPU is discussed in refer-
ence,[8] focusing on optimizing throughput within area 
and power constraints. This work achieves high float-
ing-point operation density with the help of architec-
tural techniques such as lower supply voltage, shallower 
pipelines, and relaxed gate sizing.

A high-performance floating-point arithmetic imple-
mentation on field programmable gate array (FPGA) is 
presented in references,[9,10] which focuses on optimiz-
ing speed and resource utilization. Single and double 
precision FPUs employed pipelining for improved com-
putation throughput and efficient utilization of FPGA 
resources through architectural enhancements. The 
work highlights trade-offs between latency, area, and 
performance in FPGA-based floating-point arithme-
tic designs. FPGA implementation of a single precision 
floating-point ALU is presented in references,[11,12] which 
is suggested to be extended for approximate computing 
applications.

A 32-bit floating-point ALU is presented in reference[13] 
with the ability to manage rounding, normalization, 
underflow, overflow, not-a-number condition, and han-
dling infinity values for precise numerical calculations. 
Other 32-bit and 64-bit floating-point ALUs are pre-
sented in references,[14–16] respectively, each of which 
employs Vedic mathematical principles for implement-
ing arithmetic operations for reduced latency.

Based on the study, this work aims to design a flexible 
multimodal unified ALU that offers signed and unsigned 
fixed-point as well as floating-point arithmetic and log-
ical operations into a single module, thereby reducing 
chip area, routing complexity, power consumption, and 
latency. Overall, the progression toward unified 64-bit 
ALUs capable of handling multiple arithmetic data 
types in one module is supported by recent research. 
These advancements promise enhanced performance 
and efficiency necessary for next-generation computing 
systems.

Design Methodology

The proposed design follows a bottom-up methodol-
ogy by designing independent segments for signed ALU, 
unsigned ALU, and floating-point ALU using behavioral 
modelling in Verilog hardware design language (HDL). 
Each module is individually simulated and functionally 
verified using Verilog testbench. Later, all the design 
blocks are integrated into unified ALU through the struc-
tural coding style. There are four modules that are dis-
cussed in this section.

operations for handling broad spectrum of computa-
tional tasks with multiple data types. For example, 
hardware accelerators for artificial intelligence–based 
systems work with floating-point numbers at the train-
ing stage for high precision and use integers during the 
inference stage[2] General-purpose ALUs are extended 
to support floating-point operations and signed inte-
ger operations by adding a specific hardware block or 
by using software routines to break them into integers. 
This consumes longer processing time with increased 
power and area requirement as well as routing complex-
ity. To address the demand for diverse computational 
workloads for versatile, high-performance computing 
systems, a unified ALU is needed to handle signed and 
unsigned integers with floating-point arithmetic opera-
tions and logical operations. Having a unified block is 
also advantageous in the perspective of compactness, 
efficient utilization of resources, and flexibility, and sim-
plifies the control logic as it need not send instructions 
to multiple units. This work proposes a unified multi-
modal 64-bit ALU for high throughput, which employs 
parallelism to achieve faster speed while providing flex-
ibility to the user for selecting the operational needs 
and output. The multiplier generates a 128-bit output, 
which is processed in two segments catering to most sig-
nificant and least significant bits, to allow the user to 
choose the desired part of the resultant multiplication 
to be forwarded to the next phase.  

Literature Review

Conventional ALU designs focused on unsigned integer 
arithmetic, while signed integer and floating-point oper-
ations were often implemented with separate hardware 
blocks or software routines. This results in increased 
power consumption and latency with additional hard-
ware expense. Floating-point unit (FPU) with IEEE 754 
standards[3] for 64-bit ALUs using hardware descriptive 
languages, incorporates modules for addition, sub-
traction, multiplication, and division using pipelin-
ing techniques to improve throughput while managing 
hardware complexity, as reported in references.[4,5] The 
authors in reference[5] suggested to use a converter for 
converting decimal numbers to IEEE 754 format and 
vice versa at the input and output, respectively, of the 
floating-point ALU to enable the user to provide decimal 
inputs to the ALU.

A floating-point arithmetic unit with IEEE 754 standard 
is presented in references[6,7] to reduce power consump-
tion by employing reversible logic techniques. The float-
ing-point operations such as addition, normalization, 
and rounding is performed using reversible technology. 
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increasing the output width. The simulation output for 
the 64-bit unsigned multiplication using the unsigned 
ALU segment is shown in Figure 2.

64-Bit Signed ALU

The 64-bit signed ALU proposed in this paper is respon-
sible for performing arithmetic operations like addition, 
subtraction, multiplication, and division for unsigned 
numbers. The signed ALU takes the negative binary 
numbers and converts the operands into 2’s complement 
form before performing any Arithmetic operations. Like 
unsigned ALU, the signed ALU also follows parallel mul-
tiplication of MSB and LSB both individually and simul-
taneously, and provides flexibility to the designer for 
selecting the most significant or least significant bits of 
the output for display. The signed ALU uses the tradi-
tional 2’s compliment method to perform addition and 
subtraction, as shown in Figure 3. The sign bit is taken 
care of during all arithmetic operations. The output 
waveform for performing division using the proposed 
64-bit signed ALU is shown in Figure 4.

64-Bit Unsigned ALU

Unsigned ALU is the traditional ALU design block, which 
deals with unsigned integers that are represented as 
unsigned binary bits at the hardware level. It consists 
of two units, Arithmetic unit, which performs unsigned 
addition, subtraction, multiplication, division, and a 
logical unit, which performs logical AND, OR, XOR, and 
XNOR operations, as given in Figure 1. A select line (sel) 
is used to select the required unit to be operated. While 
all the Arithmetic operations of the 64-bit unsigned 
ALU provides the 64-bit output, multiplying two 64 bits 
result in 128-bit output, and most of the traditional 
ALU designs either store MSB or LSB of result causing 
loss of data. In the proposed design, the unsigned ALU 
uses parallel approach to multiply LSBs of two operands 
and MSBs of two operands simultaneously and store 
the results in two individual registers. This parallel 
approach provides the flexibility to either display LSB 
(least 64  bits) or MSB (most 64 bits) based on design-
er’s requirement using a select line (M). Using parallel 
processing will store the complete resultant (128 bits) of 
multiplication resolving the issue of loss of data without 
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Fig. 1: 64-bit unsigned ALU block diagram.

Fig. 2: Output waveform for 64-bit unsigned multiplication using unsigned ALU
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Double precision floating-point adder/subtractor

Double precision floating-point adder is a block, which 
can perform addition and subtraction on real numbers 
that are represented in the IEEE-754 double precision 
format, as discussed in reference[17]; therefore, the 
bias would be 1024 bits. Based on the sign bit of the 
number, the floating-point adder can selectively act as 
adder or subtractor. In the floating-point adder/subtrac-
tor, the exponents are first aligned, and based on that, 
the mantissa of the smallest operand is adjusted, finally 
rounding off the result. The output for subtraction oper-
ation performed using the proposed floating-point ALU 
is shown in Figure 6.

Double precision floating-point multiplier 

Double precision floating-point multiplier is designed 
to perform multiplication on floating-point numbers 
that are represented using the 64-bit IEEE format. To 
perform multiplication of two real numbers, this float-
ing-point multiplier directly multiplies the mantissa and 
adds the exponent. The sign will be determined through 
XOR operation performed on the sign bit of both oper-
ands. The double precision floating-point multipliers are 
known for their fast and accurate multiplications popu-
larly used in digital signal processing applications.

64-Bit Floating-point ALU

The 64-bit floating-point ALU is a specialized execution 
unit, which can perform computations on real numbers 
that are represented in the IEEE754 format. The float-
ing-point ALU, as proposed in this paper, following the 
IEEE-754 double precision format is shown in Figure 5. 
Floating-point ALU is designed using the structural 
approach in Verilog HDL, where the floating-point adder, 
multiplier, and divisor are designed individually through 
behavioral modelling and explicitly called inside the 
floating-point ALU module. The blocks that are used in 
this module are as discussed here.
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Fig. 5. Block diagram for floating-point ALU.
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Fig. 3: Signed ALU block diagram.

Fig. 4: Simulation output for division using 64-bit signed ALU.
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floating-point ALU. The unified ALU implemented on the 
Spartan 7 FPGA board is shown in Figure 7. The top mod-
ule uses explicit calling for the subblocks. The 64-bit 
floating-point ALU consists of three submodules, namely, 
f_add (used for both addition and subtraction), f_mul, 
and f_div. The hierarchy is structured such that all spe-
cial cases are tested in the main module. For example, if 
either input has all exponent bits as one and a non-zero 
mantissa, the result is immediately set to a NaN and an 
invalid_op flag is raised. If both operands are 0 or infin-
ity, then the invalid_op is raised and the result will be 
NAN. Table 1 compiles the type of operation performed 
by unified ALU according to the select line signals. 

Double precision floating-point divider 

As the name suggests, the double precision float-
ing-point divider handles the division of two 64-bit float-
ing-point numbers. It divides the mantissa but performs 
subtraction on the exponent bits. The floating-point 
division is used in applications that involve scaling like 
fast Fourier transforms (FFT). Figure 5 shows the block 
diagram of the floating-point ALU.

Top module—Unified ALU

The top module is responsible for integrating all the 
design blocks, namely, signed ALU, unsigned ALU, and 

Fig. 6. Output waveform for subtraction using floating-point ALU.

Table 1. Operations performed by unified ALU.

Select lines Operations

select S sel M

0 0 0 0 0 - Logical AND

0 0 0 1 0 - Logical OR

0 0 1 0 0 - Logical XOR

0 0 1 1 0 - Logical XNOR

0 0 0 0 1 - Unsigned addition

0 0 0 1 1 - Unsigned subtraction

0 0 1 0 1 - Unsigned division

0 0 1 1 1 0 Unsigned multiplication with MSB output

0 0 1 1 1 1 Unsigned multiplication with LSB output 

0 1 0 0 - - Floating-point addition

0 1 0 1 - - Floating-point subtraction

0 1 1 0 - - Floating-point multiplication

0 1 1 1 - - Floating-point division 

1 0 0 0 - - Signed addition

1 0 0 1 - - Signed subtraction

1 0 1 0 - - Signed division

1 0 1 1 - 0 Signed multiplication with MSB output

1 0 1 1 - 1 Signed multiplication with LSB output
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XOR operation, floating-point division, and addition of 
two signed numbers, respectively. The area utilization 
in terms of core configurable hardware resources on the 
Spartan 7 FPGA board, for the unified ALU presented 
in this paper, is compiled in Table 2. Table 3 shows the 
resource utilization by unsigned ALU, signed ALU, and 
floating-point ALU in comparison to the proposed unified 

Results

Each subunit of an unified ALU is functionally verified 
using individual Verilog testbenches. After the integra-
tion of all design blocks in a structural manner under the 
top module of the unified ALU, the design is simulated 
using Xilinx Vivado and verified functionally, as shown 
in Figures 8–10, with the help of waveforms for logical 

Fig. 7: Implementation of an unified ALU.

Fig. 8: Output simulation for XOR operation using an unified ALU.

Fig. 9: Output simulation for floating-point division using an unified ALU.
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ALU. With an occupancy of 41.6% of the look-up tables 
(LUTs), 9.55% of digital signal processors (DSP), 1.19% of 
flip-flops (FF), and 1 input–output (IO) port, the on-chip 
power consumption in terms of static and dynamic 
power consumption by the individual ALU segment and 
the unified ALU is presented in Table 4. Power consump-
tion by the signals, logical implementation, DSP, and IO 
ports by the individual ALU segment and the unified ALU 
is presented in Table 5.

Conclusion and Future Scope

The multimodal ALU design presented in this paper aims 
to unify the processing of signed, unsigned, and float-
ing-point arithmetic operations within a singular hard-
ware module, thereby obviating the need for disparate 
arithmetic units and mitigating routing complexities. 
This integrated design paradigm accommodates both 
fixed-point and floating-point computations, rendering it 
highly applicable to domains such as scientific comput-
ing, engineering simulations, and real-time embedded 
systems where precision and computational throughput 
are imperative. The framework anticipates extensibility 
toward supporting heterogeneous data formats, includ-
ing INT16, INT32, BF16, and BF32, thereby broadening 
its utility across diverse application scenarios. The pro-
posed unified ALU design is intrinsically suitable for real-
ization of application-specific integrated circuits (ASIC) 
as pipelined modules for multimode execution path for 
efficient arithmetic and logical tasks. This module will 
enable seamless switching with minimal pipeline stalls 
or mode reconfiguration overhead to boost performance 
and energy efficiency while processing cryptographic 
data  or other applications requiring mixed-precision 
computation.

Fig. 10: Simulation output for signed addition operation using an unified ALU.

Table 2: Area utilization by an unified ALU.

Resource Utilization Available Utilization (%)

LUT 22129 53200 41.6

FF 1266 106400 1.19

DSP 21 220 9.55

IO 1 125 0.80

Table 5: On-chip power consumption.

Unsigned 
ALU

Signed 
ALU

Floating-
point ALU

Unified 
ALU

Signals 35.969 41.391 108.565 178.129

Logic 63.236 72.008 158.720 274.806

DSP 2.800 6.32 7.108 14.905

Input/
output

47.734 43.527 43.033 0.004

Table 3: Comparison of area utilization 
(%) by different ALUs.

Resource Unsigned 
ALU

Signed 
ALU

Floating-
point ALU

Unified 
ALU

LUT 10.15 10.81 23.61 41.6

FF 1.59 1.59 1.71 1.19

DSP 7.27 3.64 4.09 9.55

IO 0.8 0.8 0.8 0.80

Table 4: On-chip static and dynamic power consumption.

Unsigned 
ALU

Signed 
ALU

Floating-
point ALU

Unified 
ALU

Static power 
(W)

1.029 1.039 1.039 1.038

Dynamic 
power (W)

149.740 163.246 317.427 467.844
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on FPGAs. In 18th International Parallel and Distributed 
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https://doi.org/10.1109/IPDPS.2004.1303135
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12.	 Abdullah, D. (2024). Leveraging FPGA-based design for 
high-performance embedded computing. SCCTS Journal 
of Embedded Systems Design and Applications, 1(1), 
37–42. https://doi.org/10.31838/ESA/01.01.07. https://doi.
org/10.1109/DICCT64131.2025.10986594

13.	 C., S., S. M., R., M. M., & R, L. T. (2025). Comprehensive 
development and testing of a 32-bit floating-point ALU 
in Verilog. In International Conference on Electronics 
and Renewable Systems (ICEARS). IEEE. https://doi.
org/10.1109/ICEARS64219.2025.10940212

14.	 Kourav, S., Thakur, D. S., Shah, S. K., & Verma, K. (2024). 
Area and speed-efficient floating-point arithmetic log-
ical unit implementation on FPGA. In 2024 IEEE 13th 
International Conference on Communication Systems 
and Network Technologies (CSNT). IEEE. https://doi.
org/10.1109/CSNT60213.2024.10545952
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17.	 Xilinx Inc. (2014). Vivado High-Level Synthesis user 
guide (UG902). Retrieved from https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2014_1/
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Moreover, future developments like vectorization 
through single instruction multiple data (SIMD) can fur-
ther boost the ALU’s capability by allowing parallel pro-
cessing of multiple data elements. This evolution will 
make the multimodal ALU a valuable component for 
next-generation high-performance computing require-
ments for contemporary and future workloads. 
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