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ABSTRACT

An arithmetic logic unit (ALU) is the core component for any processing unit to perform
arithmetical and logical operations for modern computing. The design for ALUs for spe-
cific tasks, including integer and floating-point arithmetic, logical operations, data move-
ment, and control functions, influences the CPU architecture and digital system design.
This work presents a unified ALU implemented in Verilog hardware description language
(HDL), capable of performing arithmetic and logic operations across diverse numerical rep-
resentations. The ALU is engineered to integrate logic unit, signed arithmetic processor,
unsigned arithmetic processor, and floating-point arithmetic processor. The selection of
operation is governed by select line signals to facilitate versatile user-driven functionality
at the hardware level. To enhance the computational efficiency for handling multiplica-
tion of 64-bit signed and unsigned operands which generates a 128-bit result, the pro-
posed ALU architecture employs parallelism by processing the most significant and least
significant bits simultaneously. A flexible mechanism for selective output enables the user
to extract the desired segment of the result. By consolidating floating-point and fixed-
point computations within a single ALU instance, the proposed architecture reduces the
silicon area with reduced power dissipation and computational latency while streamlin-
ing routing complexities. This multimodal ALU design with high throughput is particularly
suited for deployment in heterogeneous computing environments such as general-purpose
processors, cryptographic accelerators, and machine intelligence hardware, where the
rapid processing of heterogeneous data types is essential for workload optimization and
energy-efficient system operation.
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INTRODUCTION

An arithmetic logic unit (ALU) is an indispensable com-
ponent of modern computing systems, as it serves as
the fundamental processing unit for arithmetic and
logic operations. It enables the central processing unit
(CPU) to execute arithmetic operations like addition,
subtraction, multiplication, and division along with log-
ical operations like AND, OR, XOR, and XNOR. ALU for
fixed-point operations offer power-efficient and faster
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computation with efficient hardware utilization for
resource-constrained environments like loT devices,
consumer electronics, and automotive control systems.
However, to support numerical accuracy for scientific
computations and complex mathematical operations for
loT systems and high-performance computing,” ALUs
are designed to precisely handle real numbers with frac-
tional components. Moreover, modern computational
needs for machine learning implementation systems
require to consolidate fixed-point and floating-point
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operations for handling broad spectrum of computa-
tional tasks with multiple data types. For example,
hardware accelerators for artificial intelligence-based
systems work with floating-point numbers at the train-
ing stage for high precision and use integers during the
inference stagel? General-purpose ALUs are extended
to support floating-point operations and signed inte-
ger operations by adding a specific hardware block or
by using software routines to break them into integers.
This consumes longer processing time with increased
power and area requirement as well as routing complex-
ity. To address the demand for diverse computational
workloads for versatile, high-performance computing
systems, a unified ALU is needed to handle signed and
unsigned integers with floating-point arithmetic opera-
tions and logical operations. Having a unified block is
also advantageous in the perspective of compactness,
efficient utilization of resources, and flexibility, and sim-
plifies the control logic as it need not send instructions
to multiple units. This work proposes a unified multi-
modal 64-bit ALU for high throughput, which employs
parallelism to achieve faster speed while providing flex-
ibility to the user for selecting the operational needs
and output. The multiplier generates a 128-bit output,
which is processed in two segments catering to most sig-
nificant and least significant bits, to allow the user to
choose the desired part of the resultant multiplication
to be forwarded to the next phase.

LITERATURE REVIEW

Conventional ALU designs focused on unsigned integer
arithmetic, while signed integer and floating-point oper-
ations were often implemented with separate hardware
blocks or software routines. This results in increased
power consumption and latency with additional hard-
ware expense. Floating-point unit (FPU) with IEEE 754
standardst® for 64-bit ALUs using hardware descriptive
languages, incorporates modules for addition, sub-
traction, multiplication, and division using pipelin-
ing techniques to improve throughput while managing
hardware complexity, as reported in references.* The
authors in reference® suggested to use a converter for
converting decimal numbers to IEEE 754 format and
vice versa at the input and output, respectively, of the
floating-point ALU to enable the user to provide decimal
inputs to the ALU.

A floating-point arithmetic unit with IEEE 754 standard
is presented in references!®’! to reduce power consump-
tion by employing reversible logic techniques. The float-
ing-point operations such as addition, normalization,
and rounding is performed using reversible technology.

: —

Another energy-efficient FPU is discussed in refer-
ence,l® focusing on optimizing throughput within area
and power constraints. This work achieves high float-
ing-point operation density with the help of architec-
tural techniques such as lower supply voltage, shallower
pipelines, and relaxed gate sizing.

A high-performance floating-point arithmetic imple-
mentation on field programmable gate array (FPGA) is
presented in references,®'” which focuses on optimiz-
ing speed and resource utilization. Single and double
precision FPUs employed pipelining for improved com-
putation throughput and efficient utilization of FPGA
resources through architectural enhancements. The
work highlights trade-offs between latency, area, and
performance in FPGA-based floating-point arithme-
tic designs. FPGA implementation of a single precision
floating-point ALU is presented in references,!""'? which
is suggested to be extended for approximate computing
applications.

A 32-bit floating-point ALU is presented in reference!™
with the ability to manage rounding, normalization,
underflow, overflow, not-a-number condition, and han-
dling infinity values for precise numerical calculations.
Other 32-bit and 64-bit floating-point ALUs are pre-
sented in references,*'® respectively, each of which
employs Vedic mathematical principles for implement-
ing arithmetic operations for reduced latency.

Based on the study, this work aims to design a flexible
multimodal unified ALU that offers signed and unsigned
fixed-point as well as floating-point arithmetic and log-
ical operations into a single module, thereby reducing
chip area, routing complexity, power consumption, and
latency. Overall, the progression toward unified 64-bit
ALUs capable of handling multiple arithmetic data
types in one module is supported by recent research.
These advancements promise enhanced performance
and efficiency necessary for next-generation computing
systems.

DESIGN METHODOLOGY

The proposed design follows a bottom-up methodol-
ogy by designing independent segments for signed ALU,
unsigned ALU, and floating-point ALU using behavioral
modelling in Verilog hardware design language (HDL).
Each module is individually simulated and functionally
verified using Verilog testbench. Later, all the design
blocks are integrated into unified ALU through the struc-
tural coding style. There are four modules that are dis-
cussed in this section.
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64-Bit Unsigned ALU

Unsigned ALU is the traditional ALU design block, which
deals with unsigned integers that are represented as
unsigned binary bits at the hardware level. It consists
of two units, Arithmetic unit, which performs unsigned
addition, subtraction, multiplication, division, and a
logical unit, which performs logical AND, OR, XOR, and
XNOR operations, as given in Figure 1. A select line (sel)
is used to select the required unit to be operated. While
all the Arithmetic operations of the 64-bit unsigned
ALU provides the 64-bit output, multiplying two 64 bits
result in 128-bit output, and most of the traditional
ALU designs either store MSB or LSB of result causing
loss of data. In the proposed design, the unsigned ALU
uses parallel approach to multiply LSBs of two operands
and MSBs of two operands simultaneously and store
the results in two individual registers. This parallel
approach provides the flexibility to either display LSB
(least 64 bits) or MSB (most 64 bits) based on design-
er’s requirement using a select line (M). Using parallel
processing will store the complete resultant (128 bits) of
multiplication resolving the issue of loss of data without

increasing the output width. The simulation output for
the 64-bit unsigned multiplication using the unsigned
ALU segment is shown in Figure 2.

64-Bit Signed ALU

The 64-bit signed ALU proposed in this paper is respon-
sible for performing arithmetic operations like addition,
subtraction, multiplication, and division for unsigned
numbers. The signed ALU takes the negative binary
numbers and converts the operands into 2’s complement
form before performing any Arithmetic operations. Like
unsigned ALU, the signed ALU also follows parallel mul-
tiplication of MSB and LSB both individually and simul-
taneously, and provides flexibility to the designer for
selecting the most significant or least significant bits of
the output for display. The signed ALU uses the tradi-
tional 2’s compliment method to perform addition and
subtraction, as shown in Figure 3. The sign bit is taken
care of during all arithmetic operations. The output
waveform for performing division using the proposed
64-bit signed ALU is shown in Figure 4.
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Fig. 2: Output waveform for 64-bit unsigned multiplication using unsigned ALU
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Fig. 4: Simulation output for division using 64-bit signed ALU.
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Fig. 5. Block diagram for floating-point ALU.
64-Bit Floating-point ALU

The 64-bit floating-point ALU is a specialized execution
unit, which can perform computations on real numbers
that are represented in the IEEE754 format. The float-
ing-point ALU, as proposed in this paper, following the
IEEE-754 double precision format is shown in Figure 5.
Floating-point ALU is designed using the structural
approach in Verilog HDL, where the floating-point adder,
multiplier, and divisor are designed individually through
behavioral modelling and explicitly called inside the
floating-point ALU module. The blocks that are used in
this module are as discussed here.

Double precision floating-point adder/subtractor

Double precision floating-point adder is a block, which
can perform addition and subtraction on real numbers
that are represented in the IEEE-754 double precision
format, as discussed in referencel'l; therefore, the
bias would be 1024 bits. Based on the sign bit of the
number, the floating-point adder can selectively act as
adder or subtractor. In the floating-point adder/subtrac-
tor, the exponents are first aligned, and based on that,
the mantissa of the smallest operand is adjusted, finally
rounding off the result. The output for subtraction oper-
ation performed using the proposed floating-point ALU
is shown in Figure 6.

Double precision floating-point multiplier

Double precision floating-point multiplier is designed
to perform multiplication on floating-point numbers
that are represented using the 64-bit IEEE format. To
perform multiplication of two real numbers, this float-
ing-point multiplier directly multiplies the mantissa and
adds the exponent. The sign will be determined through
XOR operation performed on the sign bit of both oper-
ands. The double precision floating-point multipliers are
known for their fast and accurate multiplications popu-
larly used in digital signal processing applications.
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Double precision floating-point divider

As the name suggests, the double precision float-
ing-point divider handles the division of two 64-bit float-
ing-point numbers. It divides the mantissa but performs
subtraction on the exponent bits. The floating-point
division is used in applications that involve scaling like
fast Fourier transforms (FFT). Figure 5 shows the block
diagram of the floating-point ALU.

Top module—Unified ALU

The top module is responsible for integrating all the
design blocks, namely, signed ALU, unsigned ALU, and

3ff40000000000¢

floating-point ALU. The unified ALU implemented on the
Spartan 7 FPGA board is shown in Figure 7. The top mod-
ule uses explicit calling for the subblocks. The 64-bit
floating-point ALU consists of three submodules, namely,
f_add (used for both addition and subtraction), f_mul,
and f_div. The hierarchy is structured such that all spe-
cial cases are tested in the main module. For example, if
either input has all exponent bits as one and a non-zero
mantissa, the result is immediately set to a NaN and an
invalid_op flag is raised. If both operands are 0 or infin-
ity, then the invalid_op is raised and the result will be
NAN. Table 1 compiles the type of operation performed
by unified ALU according to the select line signals.
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Fig. 6. Output waveform for subtraction using floating-point ALU.

Table 1. Operations performed by unified ALU.

Select lines

M

w
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Operations

Logical AND

Logical OR

Logical XOR

Logical XNOR

Unsigned addition

Unsigned subtraction

Unsigned division

Unsigned multiplication with MSB output

Ala|la|la|la|lololo|o

Unsigned multiplication with LSB output

Floating-point addition

Floating-point subtraction

Floating-point multiplication

Floating-point division

Signed addition

Signed subtraction

Signed division

Signed multiplication with MSB output
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Signed multiplication with LSB output
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RESULTS

Each subunit of an unified ALU is functionally verified
using individual Verilog testbenches. After the integra-
tion of all design blocks in a structural manner under the
top module of the unified ALU, the design is simulated
using Xilinx Vivado and verified functionally, as shown
in Figures 8-10, with the help of waveforms for logical

inst1

XOR operation, floating-point division, and addition of
two signed numbers, respectively. The area utilization
in terms of core configurable hardware resources on the
Spartan 7 FPGA board, for the unified ALU presented
in this paper, is compiled in Table 2. Table 3 shows the
resource utilization by unsigned ALU, signed ALU, and
floating-point ALU in comparison to the proposed unified
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Fig. 7: Implementation of an unified ALU.
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Fig. 9: Output simulation for floating-point division using an unified ALU.
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Fig. 10: Simulation output for signed addition operation using an unified ALU.

Table 2: Area utilization by an unified ALU.

Resource | Utilization | Available Utilization (%)
LUT 22129 53200 41.6
FF 1266 106400 1.19
DSP 21 220 9.55
[0) 1 125 0.80

Table 3: Comparison of area utilization
(%) by different ALUs.

Resource | Unsigned | Signed Floating- Unified
ALU ALU point ALU | ALU
LUT 10.15 10.81 23.61 41.6
FF 1.59 1.59 1.71 1.19
DSP 7.27 3.64 4.09 9.55
10 0.8 0.8 0.8 0.80

Table 4: On-chip static and dynamic power consumption.

Unsigned | Signed | Floating- | Unified
ALU ALU point ALU | ALU
Static power 1.029 1.039 1.039 1.038
(W)
Dynamic 149.740 | 163.246 317.427 | 467.844
power (W)
Table 5: On-chip power consumption.
Unsigned | Signed Floating- | Unified
ALU ALU point ALU | ALU
Signals 35.969 41.391 108.565 178.129
Logic 63.236 72.008 158.720 274.806
DSP 2.800 6.32 7.108 14.905
Input/ 47.734 43.527 43.033 0.004
output
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ALU. With an occupancy of 41.6% of the look-up tables
(LUTs), 9.55% of digital signal processors (DSP), 1.19% of
flip-flops (FF), and 1 input-output (I0) port, the on-chip
power consumption in terms of static and dynamic
power consumption by the individual ALU segment and
the unified ALU is presented in Table 4. Power consump-
tion by the signals, logical implementation, DSP, and |0
ports by the individual ALU segment and the unified ALU
is presented in Table 5.

CONCLUSION AND FUTURE SCOPE

The multimodal ALU design presented in this paper aims
to unify the processing of signed, unsigned, and float-
ing-point arithmetic operations within a singular hard-
ware module, thereby obviating the need for disparate
arithmetic units and mitigating routing complexities.
This integrated design paradigm accommodates both
fixed-point and floating-point computations, rendering it
highly applicable to domains such as scientific comput-
ing, engineering simulations, and real-time embedded
systems where precision and computational throughput
are imperative. The framework anticipates extensibility
toward supporting heterogeneous data formats, includ-
ing INT16, INT32, BF16, and BF32, thereby broadening
its utility across diverse application scenarios. The pro-
posed unified ALU design is intrinsically suitable for real-
ization of application-specific integrated circuits (ASIC)
as pipelined modules for multimode execution path for
efficient arithmetic and logical tasks. This module will
enable seamless switching with minimal pipeline stalls
or mode reconfiguration overhead to boost performance
and energy efficiency while processing cryptographic
data or other applications requiring mixed-precision
computation.
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Moreover, future developments like vectorization
through single instruction multiple data (SIMD) can fur-
ther boost the ALU’s capability by allowing parallel pro-
cessing of multiple data elements. This evolution will
make the multimodal ALU a valuable component for
next-generation high-performance computing require-
ments for contemporary and future workloads.
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