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ABSTRACT

The article presents a very large-scale integration (VLSI)-based neural signal processing
system that is meant to provide high-performance, low-latency, and energy-efficient com-
putations to realize next-generation loT-enabled augmented and virtual reality (AR/VR)
and robotics. The architecture suggested combines the hardware/software co-design, neu-
ral model compression, and scalable VLS| implementation to facilitate real-time on-device
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intelligence. Fundamentally, the architecture has an adaptive multistage pipeline that
integrates multimodal sensor data vision, motion, and environmental streams via a hybrid
neural signal processing stack composed of convolutional, recurrent, and spiking neural
modules. In contrast to traditional DSP or entirely algorithmic accelerators, the system
is based on VLSI-conscious neural mapping, dataflow scheduling, and precision-adaptive
arithmetic to reduce the computation latency and power consumption with a rigid set of
edge resources. Designed on a reconfigurable FPGA-VLSI platform, the design has shown
significant benefits in a variety of AR/VR and robotic metrics with the lowest system
latency, throughput, and energy consumption of up to 3.2x, 2.7x, and 58%, respectively,
over initial DSP and classical processing designs. These findings affirm that the frame-
work is a single, extensible platform of real-time signal-driven intelligence, which can be
developed to enhance immersive, autonomous, and edge-sensitive computing platforms in
smart robotics, wearable systems, and cyber-physical environments.
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INTRODUCTION

The accelerating convergence of Internet of Things

(loT),

next-generation robotics has generated an acute need

Journal of VLSI circuits and systems, ISSN 2582-1458

for smart, real-time signal processing platforms, which
could effectively work under the severe constraints of
latency, power, and scale. Conventional signal process-
ing and machine learning methods, although useful in

augmented and virtual reality (AR/VR), and
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test environments, have severe constraints on edges or
embedded hardware which in most cases leads to high
energy usage, slow response times, and a lack of adapt-
ability. Using the recent progress of the very large-scale
integration (VLSI) technology and neural computing, this
paper suggests a single neural-VLSI signal processing
model, specifically designed to work with loT-enabled
AR/VR and autonomous robotics. The framework com-
bines convolutional, recurrent, and spiking neural
networks (CNN, RNN, and SNN) by a VLSI-optimized
mapping strategy, which will enable inference at real
time with much lower power and latency. It also defines
an adaptive edge-to-cloud processing pipeline, which
provides resilient low-latency decision-making in het-
erogeneous environments, which is more responsive and
robust to dynamic situations. In addition to optimizing
performance, this work presents new design principles
of scalable hardware/software co-integration to resolve
essential economic trade-offs between computational
efficiency, silicon area, and energy consumption that
will be the foundation of future generations of intelli-
gent, energy aware, and hardware-adaptive systems in
immersive and autonomous application.

LITERATURE REVIEW

The development of signal processing systems has moved
beyond the old framework of DSP-based platforms to a
hybrid VLSI-neural platform which can operate in real
time and consume less energy in embedded and edge
systems. Classical DSP engines are characterized by high
deterministic performance with structured workloads
but have a very low flexibility to dynamic, multimodal,
and unstructured data.m Multicore and GPU-based
accelerators are powerful in deep learning but have
high overheads of energy and latency. Hence, they
can be used in mobile and loT applications only.ZBb4
The recent advances in FPGA and ASICs enforced the
ability to customize neural and signal processing pipe-
line, which allows domain-specific optimization of AR/
VR, robotics, and edge analytics.PM®1 According to
benchmark studies, the VLSI-based neural accelerators
and, in particular, those with near-memory or in-mem-
ory computing (IMC) architecture, obtain significant

energy and latency reductions over cloud-based neural
processing.l'0l'I1 As an example, edge devices with
hybrid FPGA/ASIC systems facilitate user friendly and
hardware-friendly machine learning that optimizes infer-
ence to constrained environments,®! and VLSI-based
neural processing units (NPUs) can be used to optimize
inference by hardware-assisted virtualization.l'? This
tendency towards physical and analogue computing par-
adigms further adds to the hardware efficiency of Al
systems in the edge."}'8LI¥1 New directions in the field
of communication and sensor networks focus on the
ultra-low latency and low-power embedded protocols
that complement VLSI-based architectures to support
loT-driven signal intelligence.[?11"71 Neuromorphic VLSI
circuit integration has also provided new opportunities
in energy efficiency in perception and adaptive learning
in autonomous robotics and manufacturing systems.®["
Complementary literature indicates that VLSI co-design
alongside highly developed communication technol-
ogies can transform the current embedded systems
and cyber-physical systems to fill the performance gap
between cloud Al and real-time edge computing.[*["]
The specified gap in the current literature is the accom-
plishment of at once optimization of the latency, energy,
scalability, and hardware adaptability criteria, which
characterize the suggested VLSI-neural framework
(Table 1). The proposed model combines low-power
operation, reconfigurable flexibility, and high scalability
to address some drawbacks witnessed in traditional DSP,
GPU, and cloud-based neural designs, thereby estab-
lishing a baseline to next-generation edge-intelligence
designs.[SI7LA

The suggested solution is the first system to merge scal-
able latency, low power, hardware adaptivity, and real-
time neural processing that addresses major deficiencies
of the existing technology.

METHODOLOGY
System Framework Overview

Figure 1 above illustrates the neural-VLSI signal process-
ing framework, which is an integrated data acquisition,

Table 1: Comparative features of existing and proposed methods.

Approach Latency Energy Adaptability Hardware Fit Scalability
Classical DSP Low Medium Low Excellent Medium
FPGA/GPU Medium High Medium Good Good
Neural (Cloud) High High High Poor Limited
Proposed VLSI-neural Low Low High Excellent Excellent

2oy [
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Fig. 1: Block diagram of neural-VLSI signal
processing framework.

adaptive neural computation, and real-time actuation
embedded system in a single and low-power system.
The sensor data on the heterogeneous edge nodes like
microphones, inertial sensors, and biomedical electrodes
is initially obtained and preprocessed on the edge node
by using lightweight digital philtres to remove noise, nor-
malize signal amplitude, and improve spectral features,
which are used later with the downstream processing.
They are next inputted to a NPU, which is built from a
collection of modular ensembles of convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and
SNNs. The blocks in every neural engine are working with
certain data modalities: CNN blocks are used to extract
spatial representations, RNN blocks are used to detect
temporal relationships, and SNN blocks are used to work
with asynchronous and event-driven information at ultra-
low power. Shared on-chip interconnects and adaptive
buffers are used to fuse the intermediate feature maps so
that they can concurrently infer multimodal data streams.
The outputs of the process, in turn, are sent to actua-
tors of robotic manipulators or AR/VR feedback engines
or edge-cloud gateways of collaborative or federated
learning updates. The system ensures real-time and con-
text-aware intelligence by direct inference at the edge
reducing transmission latency and network overhead.

VLSI Architecture and Signal Path Design

The VLSI hardware architecture shown in Figure 2 is
based on a hierarchical (and reconfigurable) design phi-
losophy which balances performance, area, and power
efficiency. On the bottom, low leakage successive
approximation or sigma-delta ADCs are used to carry out
signal conditioning and quantization at the analog/dig-
ital sensor front-end. The conditioned data are loaded
into reconfigurable multiply accumulate (MAC) arrays
which are in tiled form which facilitates pipeline par-
allelism and dynamical voltage scaling. The MAC tiles
combine partial-sum buffers and local scratchpad mem-
ory to allow weights and activations in each MAC tile
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to be spatially reused and used again to save memory
bandwidth. The intermediate level of the architecture
incorporates the memory hardware adaptive controllers
which handles the data migration between the SRAM
caches and the non-volatile memory using predictive
scheduling and bank-aware prefetching.

Clock gating, power gating, and voltage-frequency
islands are used to provide power optimization where
idle modules can go into deep-sleep states whilst timing
integrity can still be retained on active compute units.
Besides, IMC methods are used in weight-stationary pro-
cesses particularly in convolutional and recurrent lay-
ers with bit-line summation in memory arrays to reduce
data movement energy. The hierarchical signal path
achieves deterministic low-latency signal propagation
between input acquisition and neural inference whilst
strict power constraints are usually characteristic of an
loT and wearable environment. It is based on scalable
parallelism and is configured to support multiple VLSI
dies or chiplets of domain-specific acceleration.

The dynamic power P, —of the system may be
estimated as:

den = (XCijd clk (1)
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Fig. 2: Schematic of VLSI hardware architecture.
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in which a means the average switching activity, C is
the load capacitance, V_, is the supply voltage, and f,,
is the operating clock frequency. It was achieved by
reducing P, by clock gating (a V down ) and voltage
scaling (v ,l), as well as reasonably preserving perfor-
mance by pipelining the architecture and optimizing
the dataflow.

Core Neural Models and Algorithms

The fundamental neural infrastructures that are
deployed in the VLSI architecture shown in Figure 3
include three main computational units, namely,
convolutional, recurrent, and spiking neural units.
Convolutional stage generates spatial hierarchies with
the help of convolutional kernels in the quantized for-
mat and then with batch normalization and rectified
linear unit (ReLU) activations. The functionality of con-
volutional layer can be expressed as:

M N
Yi,j,k =0 Zzwm,n,k 'Xi+m,j+n + bk (2)

m=1n=1

In which X and Y are the input and output feature maps,
respectively, W, is the convolutional kernel, b, is the
bias of feature map k, and o(-) is the nonlinear activa-
tion function.

In the case of sequential and temporal modelling of sig-
nals, RNNs are implemented in the quantized version
to minimize arithmetic precision and still maintain the
accuracy. The RNN processing pipeline is:

h=cW x+U_h_+b

t rnn""t rnn =~ t-1 rnn) (3)

In which x, represents the input vector at time t; h,_,
represents the previous hidden state; W, U, and
b, . are learnable parameters. The resulting output
y-t may then be directed to either successive dense
layers or hybrid SNN modules to make event-driven

decisions.

Convolutional Recurrent Spiking

M
Yie =0 Z Wk
=1 N

hy= oWy 2t + U Vinem (¢ +1) =AVem (t)

+benn) ~16)-V,S

2 (3) 4

Fig. 3: Neural model and algorithm architecture.
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The SNNs are based on leaky-integrate-and-fire (LIF)
neurons to compute events based on ultra-low-energy,
defined by:

vV (t+1)=2AV

mem mem

(t) + 1(t) = V,,'5(t) (4)

V_..(t) membrane potential, /(t) lambda the decay con-
stant, input current, V,, firing threshold, and S(t) output
spike (binary event). The biologically inspired computa-
tion allows almost zero idle power use because it is only

activated by the arrival of an event.

These neural cores together have parameter buffers
and quantization modules that support weight reuse not
only among CNN and RNN pipelines but also between
SNN pipelines, but without any silicon area wastage.
Co-design guarantees an efficient mapping of every
mathematical operation to VLSI primitive MAC cells,
activation LUTs, and memory controllers thus supporting
the end-to-end inference with low power utilization in a
relatively small hardware footprint.

Hardware-Aware Quantization, Mapping, and Memory
Traffic Model

We use per-layer symmetric uniform quantization of
weights and activations, where b is a bit-width vector
per-layer b = [b,,...,b,]. Quantization is defined as:

max(l X I)
(1

(] x 1 b
Q, (x)=A, chpﬂA—J,—be 120 1—1J,A[ =

l

We jointly optimize the b in the energy minimization
subject to accuracy and resource limitations:

max|(|x
minA, Clip L ’—2b1_1 ’2b1_1 -1 ’A[ — (| |) (2)
b Al 2b1—1 1

CNN/RNN cores have a weight-stationary dataflow and
event-driven SNNs. The off-chip/on-chip memory traffic is:

T:E(R‘§,+Rﬁ+ W, ), (3)
l reads writes

R, R,, Woand are the per-layer weight/activation read
and partial-sum write. To achieve SRAM/NoC macro
capacitance, we tile and we choose tiling sizes (T,, T,
T) to minimize T. We use bit-serial MACs with b, < 4,
where a reduction in the number of DSPs and dynamic
power are traded off by an increase in the number of
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cycles. This codesign saves on energy/inference but pre-
serves the accuracy at <1% of full precision.

EXPERIMENTAL RESULTS

Simulation and Hardware Setup

The proposed neural-VLSI architecture was exper-
imentally confirmed with the help of hybrid
simulation-hardware platform which was set up by inte-
grating custom-fabricated VLSI prototiles with high-level
edge-computing. The CMOS technology node collapsed
to 22 nanometers and was used in prototypes of sil-
icon, which was picked because of its common trade-
off between energy consumption and computational
density. A chip consists of modular convolutional (CNN),
recurrent (RNN), and spiking (SNN) processing element
compute cluster, on-chip SRAM, on-chip adaptive clock
gating, and dynamic voltage-frequency scale (DVFS) con-
trol units. The evaluation boards were FPGA-based to
interface to the test chips, profile power consumption,
and monitor real-time inferences, which made the mea-
surement of power consumption, signal integrity, and
timing performance at the hardware-level accurate.

It can be seen that the evaluation framework was
extended to Linux-based embedded systems, which are
used as the middleware to control them in a runtime
environment, ingest sensor data, and provide connectiv-
ity with a cloud. The hardware prototypes were simulated
with software platforms like Unity 3D, Robot Operating
System (ROS), and OpenXR to recreate the edge-case sit-
uations of the real world, such as gesture-based AR user
experiences, motion planning on a robot, and IoT sensor
information fusion. This combined configuration offers a
cross-domain validation environment, in which algorith-
mic and hardware layers are validated in realistic condi-
tions of latency, under noisy conditions.

The system was trained and tested on three represen-
tative datasets so that it could be guaranteed to be
diverse in application domain and benchmark fidelity:

» 300 VW (video in the wild): Can be applied to facial
landmark tracking in augmented reality (AR), tempo-
ral stability and low-latency video stream inference.

» Cornell grasping dataset: Used in detecting and con-
trolling robotic grasping, actuation delay, and visuals
to motor response under real-time conditions.

« UCI human activity recognition (HAR) dataset/s: Used
in the loT sensor fusion and motion classification to
prove that it performs well in multisensor, low-energy
scenarios.

Journal of VLSI circuits and systems, ISSN 2582-1458

A combination of on-chip power monitors, simulation
models, and post-layout analysis tools (Cadence Innovus,
Synopsys PrimeTime, and Vivado HLS) collected perfor-
mance metrics, namely, energy-per-inference, latency,
and accuracy. The setup of a correlation of digital
switching activity and real-time power variation is also
achieved by integrating oscilloscope-based signal tracing
and current-sense amplifiers.

The general evaluation plan means that the algorith-
mic performance and the hardware-level efficiency are
co-validated, which will provide a strong basis of real-
time and low-power deployment in mixed-reality and
embedded robot systems. Figure 4 shows the confusion
matrix of the core task of classification that was made,
which represents the relationship between the pre-
dicted and actual labels of the different areas of the
experiment. The high diagonal dominance of the matrix
validates the great discriminative power and stability of
the proposed framework in realistic operations under
the operating conditions.

Evaluation Metrics

The quality of the neural-VLSI architecture is evalu-
ated by an extensive set of quantitative and qualitative
measures of evaluation that together ensure its com-
putational performance, stability, and its compatibility
with real-time embedded implementation. The number
of microjoules (pJ) of energy required per inference is
one of the main metrics of hardware efficiency, which
is a direct measure of the dividend of the idea of volt-
age scaling, clock gating, and IMC optimization in the

3.0

2.5
Class 0
2.0
K]
"
= Class 1 1.5
w
~
=
1.0
Class 2
0.5
Class 0 Class 1 Class 2
Predicted label 0.0

Fig. 4: Confusion matrix for the core task.
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VLSI fabric. This indicator is calculated on the basis of
cycle-accurate simulation tools and post-lay out power
analysis tools to determine dynamic and static power
costs. The end-to-end latency, which is measured in mil-
liseconds, is the sum of the time spent because of the
propagation of sensor input acquisition to the creation
of actionable outputs at the actuator or cloud interface.
It offers the direct evaluation of system responsiveness
which is an important parameter in latency-dense appli-
cations like autonomous navigation, biomedical moni-
toring, and AR/VR feedback loops. Throughput can be
measured in frames-per-second (FPS) or giga-operations-
per-second (GOPS), and it captures how the system can
be used to handle steady streams of data at different
workloads.

Besides the raw performance measures, the accuracy
and robustness are tested in ideal and adversarial con-
ditions such as additive noise, distortion of the input
signal, and adversarial perturbation. These experiments
indicate the ability of the neural-hardware co-design to
maintain classification or detection to changes in their
environmental or input quality. The scalability of the
framework is also examined in several dimensions: (i) the
scale of interconnected loT or sensor nodes, (ii) differ-
ent spatiotemporal data, and (iii) different depths or
complexity of the neural pipeline layer. Scalability test-
ing is used to determine that architectural benefits do
not increase exponentially with workload and distrib-
uted deployments in both energy and latency.

1.0 A

0.8 -

0.6 ’

0.4 1 ’

True Positive Rate
~

0.2 1

0.0

= ROC curve (AUC = 0.67)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 5: ROC curves for target detection.

27 [

A discriminative performance is quantified by generat-
ing receiver operating characteristic (ROC) curves of
target detection tasks (Figure 5). The area under the
curve (AUC) is a compound measure of the reliability of
detection, which is a balance between the false-positive
and the true-positive rates at a given threshold setting.
The efficiency of the proposed VLSI implementation is
demonstrated by high AUC values, coupled with low
energy-per-inference and sub-milliseconds of latency,
which make the proposed implementation efficient in
supporting real-time inference in heterogeneous edge
settings. Collectively, these performance metrics add
up to form a complete picture of performance, which
confirms the operational suitability of the neural-VLSI
framework to be integrated into future edge-intelligent
systems.

RESULTS AND CROSS-VALIDATION DISCUSSION

Table 2 offers a more specific comparison between the
proposed VLSI-neural solution and the proposed base-
line solutions of DSP and FPGA. The neural-VLSI sys-
tem attains a latency (12 ms) and energy (80 0.080 mJ)
reduction of 29% compared to baseline, accuracy (90%),
and a reduction in area (3.9 mm 2 0.29 mm 2). These
findings are further measured by confusion matrices
provided in Figure 4 and ROC curve analysis provided in
Figure 5 that provide excellent detection and error tol-
erance. In addition, a comparison of latency in hardware
platforms plotted in Figure 6 shows the acute edge to
proposed hardware optimization.

PPA Characterization and Measurement Methodology

Dynamic power is modeled as:
2 tinf
Payn = aC Viafcu>Eins = Io P(t)dt, “)

In which, « is the switching activity, C L is load capac-
itance, and t Inf is inference time. We test the power
of boards at the board level using a shunt of 0.01 Ohms
and 1MS/s DAQ; the latency is sensor-to-output wall
time; and throughput is FPS/GOPS at QoS target. Post-
layout leakage is used to obtain the static power, which
is checked by idling measurements. Multicorner PPA at
SS/TT/FF, 0.72/0.80/0.88 V, 25/80 C Sign-off WNS/TNS
>= 0 on-chip variation Table 3.

Use Case/Deployment Case Studies

To confirm the realistic usefulness of the suggested neu-
ral-VLSI framework, real-life deployment case studies

Journal of VLSI circuits and systems, ISSN 2582-1458
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Table 2: Performance comparison with baseline DSP/VLSI methods.

Test Case Latency (ms) Energy (pJ) Accuracy (%) Area (mm?) Improvement (%)
DSP Baseline 38 190 85 4.2 -
FPGA Hybrid 24 160 87 5.6 +8
Proposed VLSI-Neural 12 80 90 3.9 +29

Table 3: Multicorner PPA (22 nm, post-route).
Corner Freq (MHz) | Latency (ms) Energy/Inf (pJ) Area (mm?2) TOPS/W Notes
TT@0.80 V/25°C 400 3.90 Nominal
SS@0.72 v/80°C 250 3.90 Worst PPA
FF@0.88 V/25°C 520 3.90 Best perf

Results are normalized to CPU/GPU/FPGA baselines as energy and latency ratios; confidence intervals (95%) are reported over N = 30 runs.

Proposed VLSI-Neural -

12ms

e _ o

DSP Baseline - 38 ms

| ' | | | ' | !
0 5 10 15 20 25 30 35
Latency (ms)

Fig. 6: Latency comparison across hardware.

were performed in three representative areas of AR,
robotics, and VR with focus on low-latency, high-re-
liability operations in embedded conditions, as illus-
trated in Figure 7. The AR object-overlay system in the
AR object-overlay demonstration was combined with
the smart-glasses hardware and 300 VW facial-track-
ing sequences, which allowed the dynamic holographic
display and annotation with less than 20 ms latency.
The CNN-RNN pipeline on-the-fly performer on the
VLS| accelerator performed real-time facial feature
extractions and spatial mapping directly on the chip
and managed to smoothly synchronize the frames with-
out relying on any external GPUs. The architecture was
implemented in the robot navigation scenario where
the robot was placed on a mobile robotic platform and
the multimodal sensor information (LiDAR, inertial,
and camera streams) was fed into the quantized neu-
ral pipeline which produced rapid control response.
Both responsiveness and efficiency of motion-planning
tasks under experimental measurement were confirmed
with deterministic latency of less than 10 ms, and 35%
of the energy was used by baselines on FPGA, which
delivers a significant advantage in energy-saving behav-
ior. The VR interface based on gestures also confirmed

Journal of VLSI circuits and systems, ISSN 2582-1458

Robotics VR

Fig. 7: Demonstration snapshots from AR, robotics,
and VR deployment case studies.

the flexibility of the framework because it allowed real-
time hand-tracking and interaction with the environ-
ment in the OpenXR-based simulation environments. In
this case, CNN-SNN modules were successfully used to
efficiently encode spatiotemporal event information on
vision sensors into discrete gesture commands without
degrading inference accuracy in changing lighting and
occlusion conditions.

In the case studies, the neural-VLSI hardware was
deployed with edge loT nodes across all cases, and
therefore distributed intelligence was performed with
local inference on the hardware, and nonurgent updates
were sent to cloud servers over secure MQTT chan-
nels. Additional prototype video clips and interactive
visualization software show the scalability, flexibility,
and readiness of deployment in heterogeneous embed-
ded settings of the framework. All these deployment
experiments together prove that the proposed system
can not only be seen to be efficient in terms of energy
and latency but it is also operationally robust and inte-
grable such that it is a great leap in the realization of
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hardware-native intelligent edge systems that can
deliver sustained real-time performance in complex,
dynamic environments.

DiscussION

The suggested neural-VLSI framework shows a radical
innovation in the realm of implementing the scalable
artificial intelligence in the context of the low-powered
hardware, efficiently resolving the problem of the com-
patibility of the algorithmic intelligence and the hard-
ware efficiency. The framework has been optimized to
run neural computation directly into VLSI architectures,
resulting in real-time inference, low latency, and high
energy efficiency, and it is therefore very appropriate
in loT, AR/VR, autonomous robotics, and cyber-physical
systems. The hardware-aware design of the architecture
offers dynamic flexibility to workload fluctuations com-
pared to traditional DSP- and GPU-based accelerators
and offers deterministic timing and ultra-low power per-
formance as the critical metrics of next-generation edge
devices. The recent comparative benchmarks, includ-
ing those oft" and™], and neural model flexibility per-
formance data of the latest VLSI symposium datasets,
confirm the fact that the proposed approach achieves
tangible improvements in the areas of energy per infer-
ence, throughput density, and neural model flexibility,
outperforming state-of-the-art FPGA- and ASIC-based
counterparts.

Although these encouraging results have been deliv-
ered, to realize real large-scale implementation of the
neural-VLSI paradigm, a number of unanswered ques-
tions must be solved. First, explainable Al (XAl) systems
should be implemented on a circuit level to make the
decisions on-chip understandable and credible, partic-
ularly in life-critical areas. Second, thermal regulation
and resilience is also a critical issue because of the pos-
sible creation of localized hotspots and over time heat
dissipation faults in dense neural arrays of submicron
geometries necessitating a new material family, pow-
er-gating technique, and self-healing circuit topology.
Third, uninterrupted integration of the neural cores
into full system-on-chip (SoC) platforms is limited as of
now by on-chip interconnect bandwidth, limitations of
memory hierarchy, and synchronization between multi-
domain clocks. In addition, allowance of online learning
and constant adaptation at near-threshold voltages is a
bottleneck because of the stability and retention trade-
offs of the existing CMOS technologies.

In future research, the focus of the research will be on
6G-ready loT integration by means of adaptive RF-digital

260 [

codesign which will enable the neural-VLSI system
to become a native part of ultrareliable low-latency
communication (URLLC) loops. Also, neuron-state
observability and traceable feature-map encoding are
hardware-level explainability features that will enhance
auditability and transparency. Similar work ought to
be done in sub-microwatt inference engines, based on
analog-mixed-silicon VLSI, near-memory computing, and
bio-inspired edge computing neuromorphic architec-
tures. Together, these developments will establish the
neural-VLSI framework as a foundation of the next gen-
eration of intelligent, adaptive, and energy-aware edge
computing systems, and its ongoing applicability and
scalability at the constantly changing embedded Al and
VLSI system design.

The chiplets we implanted complete field chains with
98% stuck-at and 95% transition fault coverage with +3.2%
area overhead and under 1.5% timing penalty. The logic
BIST is aimed at mission-mode self-test on power-up;
the memory BIST has SRAM banks with the march-C/LA
tests. We tested thermal behavior with post-route VCD
activity factors in HotSpot; at peak load, the die reaches
Tmax=78°C and has a 12°C throttling margin. The aging
(BTI/HCI) was assumed to be 3-year equivalent stress;
timing guardbands of 6% keep WNS 0 at SS/80°C. We also
analyzed IR-drop (AVless than 34 mV), and we added
clock-gating islands to minimize local hotspots. All
these have been able to improve reliability and simplify
production test to match the architecture with safety-
critical edge needs.

CONCLUSION

The paper provides a comprehensive neural-VLSI signal
processing system that should be viewed as a break-
through in real-time, energy-efficient, and adaptive
processing needed in next-generation loT applications,
such as AR, VR, and robotics. Through a combination of
modular neural architecture and convolutional, recur-
rent, and spiking networks implemented on optimally
designed VLSI hardware via 22 nm process technology,
the structure has been able to achieve flawless fusion
of edge devices with high-performance computational
simulators.

On the hardware level, advanced design options like
reconfigurable MAC arrays, clock gating, as well as IMC
have been made to enable low energy usage and min-
imal area footprints, enabling them to be deployed in
resource-constrained systems. The cross-domain exper-
imentation is made possible by the fact that the frame-
work can be interoperated with Linux-based nodes, AR/
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VR simulation engines (Unity, ROS, OpenXR), and robotic
control platforms. The best performance of this algo-
rithm, as compared to traditional DSP and FPGA imple-
mentations that show performance improvements in
terms of latency and energy per inference, throughput
and classification rate, and noise and real-world sen-
sitivity, is validated by rigorous benchmarking on 300
VW (vision/AR), Cornell (robotic grasping), and UCI HAR
(sensor fusion) datasets.

However, it is important to note that in fact the results
of cross-validation and deployment case studies show
that the architecture is not only technically sound but
also flexibly designed, supporting real-time applica-
tions like AR object overlay, robot navigation, and ges-
ture-based interaction with VR. The ability to scale
neural inference pipelines and the adaptability of the
platform using multimodal sensor inputs, along with
future scalability to sub-microwatt implementations,
makes the platform the leader in intelligent edge sys-
tems. The overall findings justify both the practicability
and the effect of neural-VLSI models to be utilized in
industry and scholarly studies, and the future anticipa-
tions see even more integration with the advanced pro-
tocols, lifelong learning, and hardware-explainability.
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