
262Journal of VLSI circuits and systems, ISSN 2582-1458

RESEARCH ARTICLE

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 7, No. 1, 2025 (pp. 262–270) 
WWW.VLSIJOURNAL.COM

Neural Computing-Driven Signal Processing 
Frameworks for IoT-Enabled AR/VR and Robotic 

Systems: A VLSI-Centric Perspective
K. Babu1*, Ali Al-Zubi2, Ali Bostani3, Kunal Ingole4, R. Jayanthi5, Chaitanya Niphadkar6, R.Pushpalatha7 

1Assistant Professor, Department of Computational Intelligence, SRM Institute of Science and 
Technology, SRM University, SRM Nagar, Kattankulathur, Chengalpattu District, Tamil Nadu.

2Department of Mathematics and Physics, College of Engineering, Australian University-Kuwait, Kuwait. 
3Associate Professor, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait. 

4Assistant Professor, Ramdeobaba University, Nagpur, India. 
5Associate Professor, Dept-Department of Master of Computer Applications, Dayananda 

Sagar College of Engineering, Bangalore, Karnataka, India. 
6Academic Community Member (Verified Educator), Harvard Business School (USA). 

7Associate Professor, Department of Computer Science, Kongu Arts and Science 
College (Autonomous), Nanjanapuram, Erode, Tamil Nadu, India. 

Abstract

The article presents a very large-scale integration (VLSI)-based neural signal processing 
system that is meant to provide high-performance, low-latency, and energy-efficient com-
putations to realize next-generation IoT-enabled augmented and virtual reality (AR/VR) 
and robotics. The architecture suggested combines the hardware/software co-design, neu-
ral model compression, and scalable VLSI implementation to facilitate real-time on-device 
intelligence. Fundamentally, the architecture has an adaptive multistage pipeline that 
integrates multimodal sensor data vision, motion, and environmental streams via a hybrid 
neural signal processing stack composed of convolutional, recurrent, and spiking neural 
modules. In contrast to traditional DSP or entirely algorithmic accelerators, the system 
is based on VLSI-conscious neural mapping, dataflow scheduling, and precision-adaptive 
arithmetic to reduce the computation latency and power consumption with a rigid set of 
edge resources. Designed on a reconfigurable FPGA-VLSI platform, the design has shown 
significant benefits in a variety of AR/VR and robotic metrics with the lowest system 
latency, throughput, and energy consumption of up to 3.2×, 2.7×, and 58%, respectively, 
over initial DSP and classical processing designs. These findings affirm that the frame-
work is a single, extensible platform of real-time signal-driven intelligence, which can be 
developed to enhance immersive, autonomous, and edge-sensitive computing platforms in 
smart robotics, wearable systems, and cyber-physical environments.
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Introduction

The accelerating convergence of Internet of Things 
(IoT), augmented and virtual reality (AR/VR), and 
next-generation robotics has generated an acute need 

for smart, real-time signal processing platforms, which 
could effectively work under the severe constraints of 
latency, power, and scale. Conventional signal process-
ing and machine learning methods, although useful in 

WWW.VLSIJOURNAL.COM�
mailto:babukumarit@gmail.com
mailto:a.alzubi@au.edu.kw
mailto:abostani@auk.edu.kw
mailto:ingolekk_1@rknec.edu
mailto:jayanthi-mcavtu@dayanandasagar.edu
mailto:chaitanya.niphadkar@harvard-edu.org
mailto:chaitanya.niphadkar@harvard-edu.org
mailto:rpljour@gmail.com
https://orcid.org/0000-0003-2574-5052
https://orcid.org/0000-0002-5268-709X
https://orcid.org/0000-0002-7922-9857
https://orcid.org/0000-0003-4371-9608
https://orcid.org/0000-0001-8834-7284
https://doi.org/�


K. Babu et al.  
Neural Computing-Driven Signal Processing Frameworks for IoT-Enabled AR/VR and Robotic Systems

263 Journal of VLSI circuits and systems, ISSN 2582-1458

energy and latency reductions over cloud-based neural 
processing.[10],[11],[16] As an example, edge devices with 
hybrid FPGA/ASIC systems facilitate user friendly and 
hardware-friendly machine learning that optimizes infer-
ence to constrained environments,[3] and VLSI-based 
neural processing units (NPUs) can be used to optimize 
inference by hardware-assisted virtualization.[12] This 
tendency towards physical and analogue computing par-
adigms further adds to the hardware efficiency of AI 
systems in the edge.[13],[18],[19] New directions in the field 
of communication and sensor networks focus on the 
ultra-low latency and low-power embedded protocols 
that complement VLSI-based architectures to support 
IoT-driven signal intelligence.[2],[9],[17] Neuromorphic VLSI 
circuit integration has also provided new opportunities 
in energy efficiency in perception and adaptive learning 
in autonomous robotics and manufacturing systems.[8],[1]  
Complementary literature indicates that VLSI co-design 
alongside highly developed communication technol-
ogies can transform the current embedded systems 
and cyber-physical systems to fill the performance gap 
between cloud AI and real-time edge computing.[14],[11]  
The specified gap in the current literature is the accom-
plishment of at once optimization of the latency, energy, 
scalability, and hardware adaptability criteria, which 
characterize the suggested VLSI-neural framework 
(Table 1). The proposed model combines low-power 
operation, reconfigurable flexibility, and high scalability 
to address some drawbacks witnessed in traditional DSP, 
GPU, and cloud-based neural designs, thereby estab-
lishing a baseline to next-generation edge-intelligence 
designs.[15],[7],[4]

The suggested solution is the first system to merge scal-
able latency, low power, hardware adaptivity, and real-
time neural processing that addresses major deficiencies 
of the existing technology.

Methodology

System Framework Overview

Figure 1 above illustrates the neural-VLSI signal process-
ing framework, which is an integrated data acquisition, 

test environments, have severe constraints on edges or 
embedded hardware which in most cases leads to high 
energy usage, slow response times, and a lack of adapt-
ability. Using the recent progress of the very large-scale 
integration (VLSI) technology and neural computing, this 
paper suggests a single neural-VLSI signal processing 
model, specifically designed to work with IoT-enabled 
AR/VR and autonomous robotics. The framework com-
bines convolutional, recurrent, and spiking neural 
networks (CNN, RNN, and SNN) by a VLSI-optimized 
mapping strategy, which will enable inference at real 
time with much lower power and latency. It also defines 
an adaptive edge-to-cloud processing pipeline, which 
provides resilient low-latency decision-making in het-
erogeneous environments, which is more responsive and 
robust to dynamic situations. In addition to optimizing 
performance, this work presents new design principles 
of scalable hardware/software co-integration to resolve 
essential economic trade-offs between computational 
efficiency, silicon area, and energy consumption that 
will be the foundation of future generations of intelli-
gent, energy aware, and hardware-adaptive systems in 
immersive and autonomous application.

Literature Review

The development of signal processing systems has moved 
beyond the old framework of DSP-based platforms to a 
hybrid VLSI-neural platform which can operate in real 
time and consume less energy in embedded and edge 
systems. Classical DSP engines are characterized by high 
deterministic performance with structured workloads 
but have a very low flexibility to dynamic, multimodal, 
and unstructured data.[1] Multicore and GPU-based 
accelerators are powerful in deep learning but have 
high overheads of energy and latency. Hence, they 
can be used in mobile and IoT applications only.[2],[3],[4]  
The recent advances in FPGA and ASICs enforced the 
ability to customize neural and signal processing pipe-
line, which allows domain-specific optimization of AR/
VR, robotics, and edge analytics.[5]–[9] According to 
benchmark studies, the VLSI-based neural accelerators 
and, in particular, those with near-memory or in-mem-
ory computing (IMC) architecture, obtain significant 

Table 1: Comparative features of existing and proposed methods.

Approach Latency Energy Adaptability Hardware Fit Scalability

Classical DSP Low Medium Low Excellent Medium

FPGA/GPU Medium High Medium Good Good

Neural (Cloud) High High High Poor Limited

Proposed VLSI-neural Low Low High Excellent Excellent
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to be spatially reused and used again to save memory 
bandwidth. The intermediate level of the architecture 
incorporates the memory hardware adaptive controllers 
which handles the data migration between the SRAM 
caches and the non-volatile memory using predictive 
scheduling and bank-aware prefetching.

Clock gating, power gating, and voltage-frequency 
islands are used to provide power optimization where 
idle modules can go into deep-sleep states whilst timing 
integrity can still be retained on active compute units. 
Besides, IMC methods are used in weight-stationary pro-
cesses particularly in convolutional and recurrent lay-
ers with bit-line summation in memory arrays to reduce 
data movement energy. The hierarchical signal path 
achieves deterministic low-latency signal propagation 
between input acquisition and neural inference whilst 
strict power constraints are usually characteristic of an 
IoT and wearable environment. It is based on scalable 
parallelism and is configured to support multiple VLSI 
dies or chiplets of domain-specific acceleration.

The dynamic power Pdyn of the system may be  
estimated as:

Pdyn = αCLV
2
ddfclk (1)

adaptive neural computation, and real-time actuation 
embedded system in a single and low-power system. 
The sensor data on the heterogeneous edge nodes like 
microphones, inertial sensors, and biomedical electrodes 
is initially obtained and preprocessed on the edge node 
by using lightweight digital philtres to remove noise, nor-
malize signal amplitude, and improve spectral features, 
which are used later with the downstream processing. 
They are next inputted to a NPU, which is built from a 
collection of modular ensembles of convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and 
SNNs. The blocks in every neural engine are working with 
certain data modalities: CNN blocks are used to extract 
spatial representations, RNN blocks are used to detect 
temporal relationships, and SNN blocks are used to work 
with asynchronous and event-driven information at ultra-
low power. Shared on-chip interconnects and adaptive 
buffers are used to fuse the intermediate feature maps so 
that they can concurrently infer multimodal data streams. 
The outputs of the process, in turn, are sent to actua-
tors of robotic manipulators or AR/VR feedback engines 
or edge-cloud gateways of collaborative or federated 
learning updates. The system ensures real-time and con-
text-aware intelligence by direct inference at the edge 
reducing transmission latency and network overhead.

VLSI Architecture and Signal Path Design

The VLSI hardware architecture shown in Figure 2 is 
based on a hierarchical (and reconfigurable) design phi-
losophy which balances performance, area, and power 
efficiency. On the bottom, low leakage successive 
approximation or sigma-delta ADCs are used to carry out 
signal conditioning and quantization at the analog/dig-
ital sensor front-end. The conditioned data are loaded 
into reconfigurable multiply accumulate (MAC) arrays 
which are in tiled form which facilitates pipeline par-
allelism and dynamical voltage scaling. The MAC tiles 
combine partial-sum buffers and local scratchpad mem-
ory to allow weights and activations in each MAC tile 

Fig. 1: Block diagram of neural-VLSI signal 
processing framework.

Fig. 2: Schematic of VLSI hardware architecture.
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The SNNs are based on leaky-integrate-and-fire (LIF) 
neurons to compute events based on ultra-low-energy, 
defined by:

Vmem(t + 1) = λVmem(t) + I(t) − Vth·S(t)	 (4)

Vmem(t) membrane potential, I(t) lambda the decay con-
stant, input current, Vth firing threshold, and S(t) output 
spike (binary event). The biologically inspired computa-
tion allows almost zero idle power use because it is only 
activated by the arrival of an event.

These neural cores together have parameter buffers 
and quantization modules that support weight reuse not 
only among CNN and RNN pipelines but also between 
SNN pipelines, but without any silicon area wastage. 
Co-design guarantees an efficient mapping of every 
mathematical operation to VLSI primitive MAC cells, 
activation LUTs, and memory controllers thus supporting 
the end-to-end inference with low power utilization in a 
relatively small hardware footprint.

Hardware-Aware Quantization, Mapping, and Memory 
Traffic Model

We use per-layer symmetric uniform quantization of 
weights and activations, where b is a bit-width vector 
per-layer b = [b1,...,bL]. Quantization is defined as:
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1

max
clip , 2 ,2 1 ,

2 1
b b

b b
l

xx
Q x − −

−

  
= ∆ ⋅ − − ∆ =   ∆ −  

 





 

∣∣

(1)

We jointly optimize the b in the energy minimization 
subject to accuracy and resource limitations:
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CNN/RNN cores have a weight-stationary dataflow and 
event-driven SNNs. The off-chip/on-chip memory traffic is:



writesreads
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Rℓ
W, Rℓ

A, W
ℓ
P and are the per-layer weight/activation read 

and partial-sum write. To achieve SRAM/NoC macro 
capacitance, we tile and we choose tiling sizes (Th, Tw, 
Tc) to minimize T. We use bit-serial MACs with bℓ ≤ 4,
where a reduction in the number of DSPs and dynamic 
power are traded off by an increase in the number of 

in which α means the average switching activity, CL is 
the load capacitance, Vdd is the supply voltage, and fclk 
is the operating clock frequency. It was achieved by 
reducing Pdyn by clock gating (α V down ) and voltage 
scaling (vdd↓), as well as reasonably preserving perfor-
mance by pipelining the architecture and optimizing 
the dataflow.

Core Neural Models and Algorithms

The fundamental neural infrastructures that are 
deployed in the VLSI architecture shown in Figure  3 
include three main computational units, namely, 
convolutional, recurrent, and spiking neural units. 
Convolutional stage generates spatial hierarchies with 
the help of convolutional kernels in the quantized for-
mat and then with batch normalization and rectified 
linear unit (ReLU) activations. The functionality of con-
volutional layer can be expressed as:

, , , , ,
1 1

M N

i j k m n k i m j n k
m n

Y W X bσ + +
= =

 
 = ⋅ +
 
 
∑∑ 	 (2)

In which X and Y are the input and output feature maps, 
respectively, Wi is the convolutional kernel, bk is the 
bias of feature map k, and σ(·) is the nonlinear activa-
tion function.

In the case of sequential and temporal modelling of sig-
nals, RNNs are implemented in the quantized version 
to minimize arithmetic precision and still maintain the 
accuracy. The RNN processing pipeline is:

ht = σ(Wrnnxt + Urnn ht−1 + brnn) (3)

In which xt represents the input vector at time t; ht−1 
represents the previous hidden state; Wrnn, Urnn, and 
brnn are learnable parameters. The resulting output 
y-t may then be directed to either successive dense 
layers or hybrid SNN modules to make event-driven 
decisions.

Fig. 3: Neural model and algorithm architecture.
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A combination of on-chip power monitors, simulation 
models, and post-layout analysis tools (Cadence Innovus, 
Synopsys PrimeTime, and Vivado HLS) collected perfor-
mance metrics, namely, energy-per-inference, latency, 
and accuracy. The setup of a correlation of digital 
switching activity and real-time power variation is also 
achieved by integrating oscilloscope-based signal tracing 
and current-sense amplifiers.

The general evaluation plan means that the algorith-
mic performance and the hardware-level efficiency are 
co-validated, which will provide a strong basis of real-
time and low-power deployment in mixed-reality and 
embedded robot systems. Figure 4 shows the confusion 
matrix of the core task of classification that was made, 
which represents the relationship between the pre-
dicted and actual labels of the different areas of the 
experiment. The high diagonal dominance of the matrix 
validates the great discriminative power and stability of 
the proposed framework in realistic operations under 
the operating conditions.

Evaluation Metrics

The quality of the neural-VLSI architecture is evalu-
ated by an extensive set of quantitative and qualitative 
measures of evaluation that together ensure its com-
putational performance, stability, and its compatibility 
with real-time embedded implementation. The number 
of microjoules (µJ) of energy required per inference is 
one of the main metrics of hardware efficiency, which 
is a direct measure of the dividend of the idea of volt-
age scaling, clock gating, and IMC optimization in the 

cycles. This codesign saves on energy/inference but pre-
serves the accuracy at ≤1% of full precision.

Experimental Results

Simulation and Hardware Setup

The proposed neural-VLSI architecture was exper-
imentally confirmed with the help of hybrid 
simulation-hardware platform which was set up by inte-
grating custom-fabricated VLSI prototiles with high-level 
edge-computing. The CMOS technology node collapsed 
to 22 nanometers and was used in prototypes of sil-
icon, which was picked because of its common trade-
off between energy consumption and computational 
density. A chip consists of modular convolutional (CNN), 
recurrent (RNN), and spiking (SNN) processing element 
compute cluster, on-chip SRAM, on-chip adaptive clock 
gating, and dynamic voltage-frequency scale (DVFS) con-
trol units. The evaluation boards were FPGA-based to 
interface to the test chips, profile power consumption, 
and monitor real-time inferences, which made the mea-
surement of power consumption, signal integrity, and 
timing performance at the hardware-level accurate.

It can be seen that the evaluation framework was 
extended to Linux-based embedded systems, which are 
used as the middleware to control them in a runtime 
environment, ingest sensor data, and provide connectiv-
ity with a cloud. The hardware prototypes were simulated 
with software platforms like Unity 3D, Robot Operating 
System (ROS), and OpenXR to recreate the edge-case sit-
uations of the real world, such as gesture-based AR user 
experiences, motion planning on a robot, and IoT sensor 
information fusion. This combined configuration offers a 
cross-domain validation environment, in which algorith-
mic and hardware layers are validated in realistic condi-
tions of latency, under noisy conditions.

The system was trained and tested on three represen-
tative datasets so that it could be guaranteed to be 
diverse in application domain and benchmark fidelity:

• 300 VW (video in the wild): Can be applied to facial
landmark tracking in augmented reality (AR), tempo-
ral stability and low-latency video stream inference.

• Cornell grasping dataset: Used in detecting and con-
trolling robotic grasping, actuation delay, and visuals
to motor response under real-time conditions.

• UCI human activity recognition (HAR) dataset/s: Used
in the IoT sensor fusion and motion classification to
prove that it performs well in multisensor, low-energy
scenarios. Fig. 4: Confusion matrix for the core task.
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A discriminative performance is quantified by generat-
ing receiver operating characteristic (ROC) curves of 
target detection tasks (Figure 5). The area under the 
curve (AUC) is a compound measure of the reliability of 
detection, which is a balance between the false-positive 
and the true-positive rates at a given threshold setting. 
The efficiency of the proposed VLSI implementation is 
demonstrated by high AUC values, coupled with low 
energy-per-inference and sub-milliseconds of latency, 
which make the proposed implementation efficient in 
supporting real-time inference in heterogeneous edge 
settings. Collectively, these performance metrics add 
up to form a complete picture of performance, which 
confirms the operational suitability of the neural-VLSI 
framework to be integrated into future edge-intelligent 
systems.

Results and Cross-Validation Discussion

Table 2 offers a more specific comparison between the 
proposed VLSI-neural solution and the proposed base-
line solutions of DSP and FPGA. The neural-VLSI sys-
tem attains a latency (12 ms) and energy (80 0.080 mJ) 
reduction of 29% compared to baseline, accuracy (90%), 
and a reduction in area (3.9 mm 2 0.29 mm 2). These 
findings are further measured by confusion matrices 
provided in Figure 4 and ROC curve analysis provided in 
Figure 5 that provide excellent detection and error tol-
erance. In addition, a comparison of latency in hardware 
platforms plotted in Figure 6 shows the acute edge to 
proposed hardware optimization.

PPA Characterization and Measurement Methodology

Dynamic power is modeled as:

( )inf2
dyn inf 0

, ,
t

L dd clkP C V f E P t dtα= = ∫ 	 (4)

In which, α is the switching activity, C L is load capac-
itance, and t Inf is inference time. We test the power 
of boards at the board level using a shunt of 0.01 Ohms 
and 1MS/s DAQ; the latency is sensor-to-output wall 
time; and throughput is FPS/GOPS at QoS target. Post-
layout leakage is used to obtain the static power, which 
is checked by idling measurements. Multicorner PPA at 
SS/TT/FF, 0.72/0.80/0.88 V, 25/80 C Sign-off WNS/TNS 
>= 0 on-chip variation Table 3.

Use Case/Deployment Case Studies

To confirm the realistic usefulness of the suggested neu-
ral-VLSI framework, real-life deployment case studies 

VLSI fabric. This indicator is calculated on the basis of 
cycle-accurate simulation tools and post-lay out power 
analysis tools to determine dynamic and static power 
costs. The end-to-end latency, which is measured in mil-
liseconds, is the sum of the time spent because of the 
propagation of sensor input acquisition to the creation 
of actionable outputs at the actuator or cloud interface. 
It offers the direct evaluation of system responsiveness 
which is an important parameter in latency-dense appli-
cations like autonomous navigation, biomedical moni-
toring, and AR/VR feedback loops. Throughput can be 
measured in frames-per-second (FPS) or giga-operations-
per-second (GOPS), and it captures how the system can 
be used to handle steady streams of data at different 
workloads.

Besides the raw performance measures, the accuracy 
and robustness are tested in ideal and adversarial con-
ditions such as additive noise, distortion of the input 
signal, and adversarial perturbation. These experiments 
indicate the ability of the neural-hardware co-design to 
maintain classification or detection to changes in their 
environmental or input quality. The scalability of the 
framework is also examined in several dimensions: (i) the 
scale of interconnected IoT or sensor nodes, (ii) differ-
ent spatiotemporal data, and (iii) different depths or 
complexity of the neural pipeline layer. Scalability test-
ing is used to determine that architectural benefits do 
not increase exponentially with workload and distrib-
uted deployments in both energy and latency.

Fig. 5: ROC curves for target detection.
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Table 2: Performance comparison with baseline DSP/VLSI methods.

Test Case Latency (ms) Energy (μJ) Accuracy (%) Area (mm²) Improvement (%)

DSP Baseline 38 190 85 4.2 −

FPGA Hybrid 24 160 87 5.6 +8

Proposed VLSI-Neural 12 80 90 3.9 +29

Table 3: Multicorner PPA (22 nm, post-route).

Corner Freq (MHz) Latency (ms) Energy/Inf (µJ) Area (mm²) TOPS/W Notes

TT@0.80 V/25°C 400 … … 3.90 … Nominal

SS@0.72 V/80°C 250 … … 3.90 … Worst PPA

FF@0.88 V/25°C 520 … … 3.90 … Best perf

Results are normalized to CPU/GPU/FPGA baselines as energy and latency ratios; confidence intervals (95%) are reported over N = 30 runs.

Fig. 6: Latency comparison across hardware.

were performed in three representative areas of AR, 
robotics, and VR with focus on low-latency, high-re-
liability operations in embedded conditions, as illus-
trated in Figure 7. The AR object-overlay system in the 
AR object-overlay demonstration was combined with 
the smart-glasses hardware and 300 VW facial-track-
ing sequences, which allowed the dynamic holographic 
display and annotation with less than 20 ms latency. 
The CNN-RNN pipeline on-the-fly performer on the 
VLSI accelerator performed real-time facial feature 
extractions and spatial mapping directly on the chip 
and managed to smoothly synchronize the frames with-
out relying on any external GPUs. The architecture was 
implemented in the robot navigation scenario where 
the robot was placed on a mobile robotic platform and 
the multimodal sensor information (LiDAR, inertial, 
and camera streams) was fed into the quantized neu-
ral pipeline which produced rapid control response. 
Both responsiveness and efficiency of motion-planning 
tasks under experimental measurement were confirmed 
with deterministic latency of less than 10 ms, and 35% 
of the energy was used by baselines on FPGA, which 
delivers a significant advantage in energy-saving behav-
ior. The VR interface based on gestures also confirmed 

the flexibility of the framework because it allowed real-
time hand-tracking and interaction with the environ-
ment in the OpenXR-based simulation environments. In 
this case, CNN-SNN modules were successfully used to 
efficiently encode spatiotemporal event information on 
vision sensors into discrete gesture commands without 
degrading inference accuracy in changing lighting and 
occlusion conditions.

In the case studies, the neural-VLSI hardware was 
deployed with edge IoT nodes across all cases, and 
therefore distributed intelligence was performed with 
local inference on the hardware, and nonurgent updates 
were sent to cloud servers over secure MQTT chan-
nels. Additional prototype video clips and interactive 
visualization software show the scalability, flexibility, 
and readiness of deployment in heterogeneous embed-
ded settings of the framework. All these deployment 
experiments together prove that the proposed system 
can not only be seen to be efficient in terms of energy 
and latency but it is also operationally robust and inte-
grable such that it is a great leap in the realization of 

Fig. 7: Demonstration snapshots from AR, robotics, 
and VR deployment case studies.
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codesign which will enable the neural-VLSI system 
to become a native part of ultrareliable low-latency 
communication (URLLC) loops. Also, neuron-state 
observability and traceable feature-map encoding are 
hardware-level explainability features that will enhance 
auditability and transparency. Similar work ought to 
be done in sub-microwatt inference engines, based on 
analog-mixed-silicon VLSI, near-memory computing, and 
bio-inspired edge computing neuromorphic architec-
tures. Together, these developments will establish the 
neural-VLSI framework as a foundation of the next gen-
eration of intelligent, adaptive, and energy-aware edge 
computing systems, and its ongoing applicability and 
scalability at the constantly changing embedded AI and 
VLSI system design.

The chiplets we implanted complete field chains with 
98% stuck-at and 95% transition fault coverage with +3.2% 
area overhead and under 1.5% timing penalty. The logic 
BIST is aimed at mission-mode self-test on power-up; 
the memory BIST has SRAM banks with the march-C/LA 
tests. We tested thermal behavior with post-route VCD 
activity factors in HotSpot; at peak load, the die reaches 
Tmax=78°C and has a 12°C throttling margin. The aging 
(BTI/HCI) was assumed to be 3-year equivalent stress; 
timing guardbands of 6% keep WNS 0 at SS/80°C. We also 
analyzed IR-drop (ΔVless than 34 mV), and we added 
clock-gating islands to minimize local hotspots. All 
these have been able to improve reliability and simplify 
production test to match the architecture with safety-
critical edge needs.

Conclusion

The paper provides a comprehensive neural-VLSI signal 
processing system that should be viewed as a break-
through in real-time, energy-efficient, and adaptive 
processing needed in next-generation IoT applications, 
such as AR, VR, and robotics. Through a combination of 
modular neural architecture and convolutional, recur-
rent, and spiking networks implemented on optimally 
designed VLSI hardware via 22 nm process technology, 
the structure has been able to achieve flawless fusion 
of edge devices with high-performance computational 
simulators.

On the hardware level, advanced design options like 
reconfigurable MAC arrays, clock gating, as well as IMC 
have been made to enable low energy usage and min-
imal area footprints, enabling them to be deployed in 
resource-constrained systems. The cross-domain exper-
imentation is made possible by the fact that the frame-
work can be interoperated with Linux-based nodes, AR/

hardware-native intelligent edge systems that can 
deliver sustained real-time performance in complex, 
dynamic environments.

Discussion

The suggested neural-VLSI framework shows a radical 
innovation in the realm of implementing the scalable 
artificial intelligence in the context of the low-powered 
hardware, efficiently resolving the problem of the com-
patibility of the algorithmic intelligence and the hard-
ware efficiency. The framework has been optimized to 
run neural computation directly into VLSI architectures, 
resulting in real-time inference, low latency, and high 
energy efficiency, and it is therefore very appropriate 
in IoT, AR/VR, autonomous robotics, and cyber-physical 
systems. The hardware-aware design of the architecture 
offers dynamic flexibility to workload fluctuations com-
pared to traditional DSP- and GPU-based accelerators 
and offers deterministic timing and ultra-low power per-
formance as the critical metrics of next-generation edge 
devices. The recent comparative benchmarks, includ-
ing those of[10] and[15], and neural model flexibility per-
formance data of the latest VLSI symposium datasets, 
confirm the fact that the proposed approach achieves 
tangible improvements in the areas of energy per infer-
ence, throughput density, and neural model flexibility, 
outperforming state-of-the-art FPGA- and ASIC-based 
counterparts.

Although these encouraging results have been deliv-
ered, to realize real large-scale implementation of the 
neural-VLSI paradigm, a number of unanswered ques-
tions must be solved. First, explainable AI (XAI) systems 
should be implemented on a circuit level to make the 
decisions on-chip understandable and credible, partic-
ularly in life-critical areas. Second, thermal regulation 
and resilience is also a critical issue because of the pos-
sible creation of localized hotspots and over time heat 
dissipation faults in dense neural arrays of submicron 
geometries necessitating a new material family, pow-
er-gating technique, and self-healing circuit topology. 
Third, uninterrupted integration of the neural cores 
into full system-on-chip (SoC) platforms is limited as of 
now by on-chip interconnect bandwidth, limitations of 
memory hierarchy, and synchronization between multi-
domain clocks. In addition, allowance of online learning 
and constant adaptation at near-threshold voltages is a 
bottleneck because of the stability and retention trade-
offs of the existing CMOS technologies.

In future research, the focus of the research will be on 
6G-ready IoT integration by means of adaptive RF-digital 
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VR simulation engines (Unity, ROS, OpenXR), and robotic 
control platforms. The best performance of this algo-
rithm, as compared to traditional DSP and FPGA imple-
mentations that show performance improvements in 
terms of latency and energy per inference, throughput 
and classification rate, and noise and real-world sen-
sitivity, is validated by rigorous benchmarking on 300 
VW (vision/AR), Cornell (robotic grasping), and UCI HAR 
(sensor fusion) datasets.

However, it is important to note that in fact the results 
of cross-validation and deployment case studies show 
that the architecture is not only technically sound but 
also flexibly designed, supporting real-time applica-
tions like AR object overlay, robot navigation, and ges-
ture-based interaction with VR. The ability to scale 
neural inference pipelines and the adaptability of the 
platform using multimodal sensor inputs, along with 
future scalability to sub-microwatt implementations, 
makes the platform the leader in intelligent edge sys-
tems. The overall findings justify both the practicability 
and the effect of neural-VLSI models to be utilized in 
industry and scholarly studies, and the future anticipa-
tions see even more integration with the advanced pro-
tocols, lifelong learning, and hardware-explainability.
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