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Abstract

The recent accelerated growth of artificial intelligence (AI) in embedded and edge systems 
has further heightened the demand for energy-efficient VLSI architectures that can com-
pute real-time and multimodal neural physics with limited power and latency. The tradi-
tional von Neumann architectures fail to cope with these requirements because the cost 
of data exchange between processing and memory units is very high. To overcome this 
drawback, this contribution presents an energy-conscious neural VLSI system that incorpo-
rates convolutional (CNN), recurrent (RNN), and spiking (SNN) processing units in a single 
adaptive system. The design is fabricated with a 22 nm technology based on fully depleted 
silicon-on-insulator (FD-SOI) technology, dynamic voltage and frequency scaling (DVFS), 
hierarchical power gating, approximate arithmetic and in-memory computing (IMC) in 
order to maximize the trade-off between energy efficiency and computational throughput. 
A network-on-chip (NoC) reconfigurable interconnect allows workload to easily be migrated 
between neural domains, and a firmware-level scheduler (S) as well as Linux-based mid-
dleware (M) offers real-time power management (S) and orchestration of workloads (M). 
The correct operation of hardware and software is confirmed by hardware/software co-
simulation in ROS and Unity 3D. Experimental test on benchmark data, 300 VW on facial 
landmark tracking, Cornell Grasp on robotic perception, and the UCI-HAR on sensor fusion 
indicate strong inference behavior with an error margin of less than +1% deviation in accu-
racy with respect to floating-point counterparts. The fake prototype attains 5.2 TOPS/W 
and 0.35 pJ/MAC efficiency with the best comparisons with similar edge accelerators in 
energy and area measures. These findings support the possibility of the suggested archi-
tecture to be used in wearable devices, autonomous drones, intelligent sensors, and other 
future IoT-robotics systems that will demand persistent, low-power intelligence.
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5.2 TOPS/W and 0.35 pJ/MAC, at 22 nm FD-SOI, and is 
smaller in area and thermal footprint than other simi-
lar edge accelerators. Taken together, these inventions 
create a route to completely adaptive neuromorphic 
system-on-chip (SoC) design that can be used in continu-
ous low-power intelligence in the next-generation robot-
ics and IoT ecosystems. 

Literature Review

The recent advances in the low-power design of neu-
romorphic and reconfigurable VLSI have prompted a 
number of developments aimed at energy-efficient AI 
and IoT system computation. One of the key goals of 
such developments is to ensure a high throughput with 
a low energy consumption and flexibility to various neu-
ral workloads including convolutional, recurrent, and 
spiking networks.

Initial developments in neuromorphic hardware were 
the True North chip by IBM[1], a large-scale, digital spik-
ing neural network which demonstrated the feasibility of 
event-based computation at very low power. True North 
used about 5.4 billion transistors to implement 1  mil-
lion spiking neurons and used 70 mW to operate. This 
was a realization that the spike-based communication 
was capable of making scalability without the excessive 
energy footprint of synchronous logic. Subsequently, 
Loihi 2 platform by Intel[2] took the field further with 
asynchronous spiking cores and on-chip plasticity mech-
anisms, and allowed on-device learning. Nonetheless, 
it is programmable only to spiking-domain tasks which 
restricts its applicability to mixed-signal or traditional 
deep learning applications.

In pure digital space, Google reached an Edge TPU with 
4 TOPS/W, through the application of fixed-function 
quantized inference operate lines customized to pro-
cess edge images. Equally, NVIDIA launched Jetson Orin 
Nano[3] with the integration of a heterogeneous CPU-
GPU-DLA with mixed-precision arithmetic though with a 
higher energy cost since it is a general-purpose archi-
tecture. Scholarly prototypes include Eyeriss v2[4],[5] and 
Eyeriss Lite[6,7] of MIT. Eyeriss v2 also showed a hierarchi-
cal compression of memory compression of CNN accel-
eration up to 3× data reuse, and Eyeriss Lite provided 
wearable inference platforms with aggressive clock gat-
ing and reconfigurable dataflows to minimize leakage 
power.

To minimize the complexity of arithmetic, a number 
of works[8–10] suggested approximate multipliers and 

Introduction

The expansion of interconnected devices, embed-
ded intelligence in the contemporary contexts, has 
exerted more pressure on the need to have an effec-
tive on-device artificial intelligence (AI) processing. 
Autonomous robots, autonomous sensors, and wear-
able electronics are examples of edge systems whose 
computational needs are becoming more complex and 
sensitive to energy and latency limits. Conventional 
centralized AI systems, in which data are offloaded to 
cloud servers to be inferred, have a very high latency, 
bandwidth consumption, and power consumption. These 
shortcomings have shifted the paradigm to near sensor 
and in situ computing where hardware accelerators are 
incorporated directly into IoT nodes. In this context, 
the design of neural processing hardware within a very-
large-scale integration (VLSI) framework must balance 
three conflicting requirements: energy efficiency, com-
putational throughput, and flexibility across diverse 
workloads. Digital accelerators are programmable and 
precise, but they tend to consume large dynamic energy 
when performing matrix operations. Analog and mixed 
signals realize operations with extremely low energy 
consumption, but have issues with linearity, variability 
of devices, and scalability. The recent introduction of 
22 nm complete depletion silicon-on-insulator (FD-SOI) 
technology offers an ideal trade-off as it has the capa-
bility of operating at ultra-low voltages with very low 
leakage, and thus hybrid digital analog circuits are tai-
lored to adapt AI computing. Multiple neural comput-
ing types are now integrated into a single architecture, 
such as convolutional neural networks (CNNs) to pro-
cess vision, recurrent neural networks (RNNs) to make 
sequential computations, and spiking neural networks 
(SNNs) to make bioinspired spike-driven computations. 
This type of design is starting to be essential for the 
next-generation IoT-robotics system where camera, 
lidar, inertial measurement units (IMUs), and bio-signal 
sensor heterogeneous sensory data are all merged in 
real time. To meet this demand, the proposed study 
is an energy-conscious computation that proposes an 
adaptive VLSI design, which integrates CNN, RNN, and 
SNN execution in the same chip. It has a hierarchical 
design with an in-memory computing (IMC) graph with 
dynamically voltage- and frequency-scaled (DVFS) neu-
ral clusters managed by a fine-grained power manage-
ment unit (PMU) with the ability to optimize workload 
domains in real time. A software-defined scheduler sup-
ports cross-domain task migration of sub-12 µs transition 
latencies, which makes it responsive when the num-
ber of computations is varied. Ferdinandi et al. (2012) 
demonstrated the silicon prototype with efficiencies of 
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Methodology

The proposed energy-conscious neural VLSI architec-
ture, as shown in Figure 1, is systematically organized 
into three hierarchical layers that aim at making data-
flow optimization, reducing energy use, and supporting 
multimodal neural computation. These layers include:

(i)	 a neural compute layer which combines heteroge-
neous processing cores used to implement CNNs, 
RNNs, and SNNs;

(ii)	a memory and interconnect subsystem which makes 
use of in-memory computing (IMC) arrays and a 
reconfigurable network-on-chip (NoC); and (iii) to 
achieve the aforementioned, the following are the 
components: a PMU which handles dynamic voltage 
and frequency scaling (DVFS) and context-sensitive 
power gating.

In this architecture, the neural compute layer has spe-
cialized hardware clusters that are optimized to spe-
cific computational paradigms. The CNN cluster has high 
throughput convolutional functionality and has parallel 
multiply accumulate (MAC) pipelines; RNN cluster has 
gated memory frameworks and iterative recurrence 
control; and SNN cluster has event-driven logic to carry 
out inference based on spikes asynchronously. This non-
homogeneous setup allows allocating resources to com-
puting dynamically based on the workload type and 
priority.

These compute engines are connected via the mem-
ory subsystem, which uses RRAM-based IMC arrays and 
hierarchical SRAM buffers, giving them high bandwidth 
and low latency in their weight and activation access. 
This company minimizes the number of off-chip memory 

logarithmic multipliers to alleviate switching activity 
during the execution of matrices. These rough arithme-
tic methods can save dynamical power usage by 30–40% 
with a small loss in accuracy. This may be applied, in 
particular, in AI inference, where precision versus 
energy trade-offs can be integrated in statistical tolera-
tion of error.

Besides conventional CMOS logic, analog in-memory com-
puting (IMC) architectures have also been of interest as 
one method to put computing and data storage together 
to dramatically minimize the amount of data trans-
ferred between them. RRAM or SRAM crossbar-based IMC 
applications[11,12] utilize weights as conductance states, 
and they can be used to perform multiply accumulate 
operations with memory cells by the laws of Ohm and 
Kirchhoff. This eliminates the repetitive memory reads, 
however, with problems of nonlinearity of devices, vari-
ance, and poor duration. In order to mitigate these draw-
backs, hybrid analog-digital accelerators[13,14] are digitized 
partial sums using low-resolution ADCs, trading off 
energy consumption and numerical performance. Recent 
initiatives also emphasize on run-time flexibility. The 
paper in reference[15] introduced a reconfigurable VLSI 
core which could dynamically change voltage island and 
clock domains based on the workload statistics, thereby 
optimizing the power-performance trade-offs at runtime. 
To complement this, reference[16-18] suggested hierar-
chical models of energy prediction with neural compil-
ers to duplicate the automation of dynamic voltage and 
frequency scaling (DVFS) decisions with the disconnect 
between algorithmic demand and circuit operation.

Regardless of these developments, current accelerators 
tend to focus on one type of neural architecture, includ-
ing CNNs or SNNs, and do not have unified designs to 
run heterogeneous tasks on a single die. Besides, not 
many implementations offer middleware integration of 
cross-domain AI workloads across robotics, AR/VR, and 
IoT ecosystems.

This paper is unique in that it introduces an energy-
conscious VLSI architecture that can implement multi-
modal neural computation (CNN, RNN, and SNN) on a 
unified adaptive control program. The architecture 
is based on power redistribution between the hetero-
geneous cores on the basis of DVFS and a middleware 
orchestration layer that fits the Linux-based embedded 
platforms. By doing this, real-time workload exchange 
and cross-layer optimization are achievable, and the 
design is placed between neuromorphic computing, 
reconfigurable SoC architecture, and intelligent IoT-
robotics integration.

Fig. 1: Block diagram of the proposed energy-aware 
neural VLSI architecture.
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transfers, which is one of the most energy-consuming 
operations in deep learning accelerators. NoC fabric 
connects all the clusters and memory banks together 
with adaptive routing and arbitration logic and guaran-
tees deterministic latency and efficient communication 
of coexisting neural jobs.

At the lowest level, PMU oversees voltage and frequency 
realms using digitally regulated regulators. To achieve 
a balance between energy efficiency and the real-time 
performance, the PMU tracks the workload demand, the 
temperature, and the battery level, and uses adaptive 
DVFS. In this way, every neural core works in optimum 
energy levels without going beyond latency limits.

Mathematical Model of Energy Scaling

The model of the dynamic energy consumption of the 
architecture is:

	 2
total leak )( () ,i i i i

i

E C V f N E T V= +∑ 	 (1)

Virtually every core in a chip is characterized by its load 
capacitance Ci supply voltage Vi, operating frequency fi, 
and active cycle count Ni. Eleak(T,V) is the thermal and 
bias-dependent statical power.

The PMU reduces the overall use of energy by finding a 
constrained optimization problem:

	 total max req,
min s.t.  ,

i i
i iV f

E D D A A≤ ≥ 	  (2)

in which Di is the delay in the task, and Ai is the 
demanded accuracy. Such a formulation guarantees that 
real-time performance is achieved and the model fidel-
ity is not below the tolerable level. The adaptive optimi-
zation process is a continuous process that is performed 
in firmware, as shown in Algorithm 1.

The algorithm is dynamic in the redistribution of power 
and compute resources among neural cores. Voltage and 
frequency are also increased when a CNN activity is in 
the queue, and decreased when throughput is needed, 
and vice versa to use less energy. This flexibility at the 
firmware level allows the precise power management 
in accordance to the workload behavior, as shown in 
Figure 1.

Hardware Parameters

Table 1 lists the main design and implementation 
parameters of the fabricated prototype. The chip was 

Algorithm 1. Energy-aware workload scheduling.

|̀ Input: Task queue Q={CNN,RNN,SNN}, system metrics 
(Temperature, Load, Battery)
| Output: Optimal operating state (Voltage, Frequency, 
Core selection) |
1.	 Monitor current load and thermal headroom.
2.	 For each task Ti in Q:

•	if Ti.type == CNN → assign core = CONV_CLUSTER
•	if Ti.type == RNN → assign core = REC_CLUSTER
•	if Ti.type == SNN → assign core = SPIKE_CLUSTER

3.	 Estimate energy-per-MAC using the local power 
model.

4.	 Adjust (V,f) ← PMU.optimize(Etotal,Delayconstraint).
5.	 Dispatch task and update telemetry logs.
6.	 Repeat every scheduling window.

Table 1. Key Design Parameters of the 
Proposed VLSI Architecture.

Parameter Value/Range Description

Technology 
Node

22 nm FD-SOI Low-leakage substrate

Core Types CNN/RNN/SNN Reconfigurable compute 
engines

Supply 
Voltage

0.35–0.9 V Dynamic DVFS range

Clock 
Frequency

10–800 MHz Configurable by PMU

IMC Array Size 128 × 128 cells RRAM-based matrix 
multiply

On-Chip 
Memory

8 MB SRAM + 512 
kB IMC

Hierarchical storage

Interfaces SPI, UART Host communication

Peak 
Efficiency

5.2 TOPS/W Measured at 0.55 V

designed in the 22 nm FD-SOI technology that offers the 
capability of body-biasing to reduce leakage and also 
boost performance. The programmable range of supply 
(0.35–0.9 V) allows various modes of DVFS controlled by 
the PMU. Each compute cluster has a power efficiency/
latency trade-off of 10 MHz to 800 MHz. The IMC array 
contains 128 × 128 RRAM cells, which is an analog matrix 
multiplier that has almost zero data movement, and 8 
MB SRAM and 512 kB IMC is used as hierarchical on-chip 
storage.

Design Flow and Verification

The full design cycle used an integrated three-level ver-
ification plan, which included behavioral modelling, post 
synthesis simulation, and hardware in the loop validation. 
In the architectural level, MATLAB and System C were 



K. Lakshmi Narayanan et al.  
Energy-Aware VLSI Architectures for Intelligent Signal Processing

257Journal of VLSI circuits and systems, ISSN 2582-1458

Results

The suggested energy-conscious neural VLSI architecture 
was thoroughly tested by using the SPICE-based circuit 
simulation, FPGA-based hardware emulation, and actual 
embedded system implementation. It was designed 
in 22 nm FD-SOI technology, where it was possible to 
control the back-bias voltage as well as dynamically 
scale performance and leakage between workloads. To 
test the proposed dynamic voltage and frequency scal-
ing (DVFS) strategy, the chip was tested with a series 
of voltage sweeps between 0.4 V and 1.0 V, and using 
convolutional (CNN), recurrent (RNN), and spiking (SNN) 
workloads, functional correctness across all three work-
loads was verified.

Figure 2 shows the latency versus power trade-off curve 
between DVFS operating points. Since the dynamic 
power consumption depends on the supply voltage, at 
low supply voltage the dynamic power consumption 
drops exponentially, which is also in line with the ana-
lytical model. At 0.4 V, power consumption is 63% less 
than in the nominal 0.9 V case and latency is also about 
15% longer, which shows that the design is highly ener-
gy-efficient in terms of energy-delay performance. The 
CNN engine is the most sensitive to scaling of latencies 
by voltage, as it has a deeper pipeline, whereas the SNN 
engine has a relatively constant throughput with lower 
voltage, as it is an event-driven computation.

Three common benchmark datasets were put into prac-
tice to measure inference performance: 300 VW used in 
facial landmark tracking, UCI-HAR used in human activity 

used to model behavior-wise to make sure that quantized 
CNN, RNN, and SNN kernels have algorithmic correctness 
in the context of limited numerical precision. The analog 
subcircuits were modeled in Cadence Virtuoso, and the 
logic components of the digital logic were generated in 
Synopsys Design Compiler with a 22 nm FD-SOI process in 
mind. These measures were taken to guarantee proper 
co-optimization of device-level analog model, RTL func-
tionality, and post-layout timing.

To check post-silicon consistency, Synopsys VCS was 
being able to run gate-level simulations on the efficacy 
of clock-gating, timing, and synchronization between 
the PMU and neural compute clusters. At this point, 
power modelling was performed with MATLAB-based 
scripts, correlating factors of switching activity with 
estimated energy per MAC operation, and was necessary 
to agree with analytical model results in the section on 
“Hardware Parameters”.

The prototype of the hardware emulation was based on 
the Xilinx Kintex-7 FPGA platform, which emulated the 
transitions to DVFS and schedule of workloads through 
a closed-loop system. The video below shows that this 
configuration enabled real-time testing of the PMU con-
trol algorithms and scheduler implementation at the 
firmware level, as in Algorithm 1. Current and voltage 
measurements were taken on-chip with Tektronix MSO64 
oscilloscope and INA231 current monitors which gave 
time-aligned measurements which could be compared 
with the data obtained in SPICE. All the workloads, CNN, 
RNN and SNN, were repeated 10 times, and all reported 
measures are a mean of these executions to provide sta-
tistical strength.

ROS-based robotic workloads were used in the exper-
imental environment to replicate realistic sensor and 
actuator behavior and Unity 3D simulation to prove 
that the hardware behaves deterministically in dynamic 
conditions. The modeled situation of co-simulation and 
emulation therefore provided precise correspondence 
among the analytical modeling, synthesized logic, and 
the measured silicon performance.

Overall, the suggested approach will bring together 
algorithmic intelligence, circuit-level adaptivity, and 
system-level power management in a well-integrated 
VLSI system. The design, based on its hierarchical form 
and adaptive feedback control, as shown in Figure 1, 
Algorithm 1, and Table 1, is able to achieve significant 
gains in energy efficiency and workload versatility as a 
scalable base to next-generation embedded and neuro-
morphic computing systems. 

Fig. 2: Latency–power trade-off across DVFS 
operating modes.
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and frequency scaling through DVFS modes, which 
showed steady voltage transition dynamics with no 
oscillatory overshoot. Likewise, Figure 4 presents the 
normalized throughput to energy of the three neural 
modes, which is a sensible performance comparison.

Discussion

The experimental findings confirm that the energy con-
scious neural VLSI architecture is capable of saving a lot 
of energy without affecting the computational reliabil-
ity or the precision of the inferences. Back-bias control 
of the transistor threshold voltage is made available 
through the application of FD-SOI technology, which 
offers a special way to achieve adaptive voltage scal-
ing in the face of workload variability. This is notably 
useful in heterogeneous workloads like CNN, RNN, and 
SNN, with large variations in computational intensity 
and temporal data dependency. Compared with the the-
oretical prediction of the latency-power curve (power 
proportional to the square of the voltage P 0 V 2 f), the 
measured latency power curve (Figure 2) indicates that 
the DVFS controller is indeed operating on the ener-
gy-minimizing path indicated by the analytical model.

The measured 0.35 pJ/MAC energy value of IMC func-
tions depicts the effectiveness of charge-sharing analog 
computations as well as decreased memory traffic. In 
contrast, traditional SRAM-based architectures consume 
between 1 and 3 pJ/MAC, which is mostly as a result of 
frequently reading the same data. The capability to do 
partial-sum accumulation directly in the memory array 
also reduces the energy of interconnect parasitics again 
in line with other current research trends in in-mem-
ory computing[8]–[11] The observed 15% latency penalty at 
0.4 V indicates that additional pruning of the algorithm 
at the algorithm level and adaptive clock gating might 
result in an additional 20–25% energy savings without 
compromising its performance.

Also, the 12 µs transition time of the DVFS controller is 
responsive to real-time embedded intelligence, such 
as mobile robotics and AR/VR devices, in which frame-
to-frame workload variation requires speedy response 

recognition, and Cornell Grasp Dataset used in robotic 
perception. Measurements of accuracy in these tasks 
show that there is less than a ±1% deviation between 
floating-point baselines, and this proves the stability of 
analog and mixed-signal compute units with scaling of 
voltages. In particular, CNN core obtained 89.7% on 300 
VW, RNN obtained 94.5% on UCI-HAR, and SNN obtained 
91.2% on Cornell Grasp. These findings confirm the fact 
that quantization-sensitive training and IMC analog vari-
ability compensation strategies are effective in main-
taining the quality of learning.

Energy efficiency of the measured in-memory com-
puting (IMC) operations (0.35 pJ/MAC) and digital MAC 
units (1.1 pJ/MAC) was measured. This yields a mean 3× 
improvement over the conventional SRAM-based neural 
accelerators. Transient supply current waveforms were 
used to measure the hardware test system based on 
an FPGA controller board and precision current moni-
tors, which verified sub- 12 µs-lateral transition latency 
between voltage levels. These experimental results are 
in harmony with the predicted DVFS controller response 
time response as per the predicted model of the analyt-
ical framework.

In summary, as given in Table 2, the proposed VLSI chip 
has high energy efficiency, of 5.2 TOPS/W, and high area 
of only 3.9 mm2. The above results indicate the bal-
ance the architecture had on both the computational 
throughput and the silicon usage, as it outperforms the 
performance metrics of the available accelerators at 
the same technology node. The seen improvements are 
because of the exploitation of FD-SOI back-bias tunabil-
ity, and allows fine-grained scaling of voltages and leak-
age, and in-memory computing (IMC) subsystem, which 
reduces data-movement energy by a factor of thou-
sands. Combined with the design decisions, the system 
can maintain high throughput within constrained power 
budgets, which justifies the usefulness of the suggested 
energy-conscious VLSI strategy to edge intelligence sys-
tems of the next generation.

To explain the temporal behavior, Figure 3 shows the 
experimentally measured transient response of current 

Table 2: Performance Comparison with Recent Accelerators.

Architecture Technology Node Efficiency (TOPS/W) Latency (ms) Area (mm²)

Edge TPU[17] 28 nm 4.0 6.8 40

Eyeriss v2[4] 65 nm 2.7 10.1 42

Loihi 2[2] 14 nm 3.8 8.5 31

Proposed VLSI 22 nm FD-SOI 5.2 4.7 3.9
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Fig. 3: Transient response of supply current and 
frequency during DVFS transitions.

Fig. 4: Normalized throughput versus energy for 
CNN, RNN, and SNN workloads.

variation. This behavior was confirmed by the FPGA-based 
prototype that provided smooth operation under different 
current profiles by performing the transitions between 
CNN, RNN, and SNN tasks by continuing workload.

The system would take less than 10 ms response time 
to perform grasp-detection tasks on a manipulator arm 
in robotic use-case experiments allowing the system to 
perform a high-precision grasp and real-time feedback. 
In the case of augmented-reality landmark tracking, 
which was implemented in Unity 3D, the architecture 
could maintain 120 FPS with overall power consumption 
of less than 600 mW, which is a clear indication of scal-
ability to edge-AI applications. The low latency, high-ef-
ficiency, and stable operation over the voltage domains 
justify the viability of the architecture to be used in 
autonomous IoT-robotics integration.

In a nutshell, the suggested VLSI system is an advance 
in the energy adaptable neuromorphic body format, 
which is a mixture of mixed signal compute components 

and digital controlled power management. The article 
confirms that it is possible to achieve high throughput 
per watt and system responsiveness through the fine 
grained adaptation of heterogeneous neural tasks by 
using analytical modeling, SPICE-level simulation, and 
that the validation by using the FPGA-in-the-loop can be 
significant. Such findings constitute the empirical basis 
of the further investigation of distributed, multichiplet 
VLSI systems of edge AI computing. 

The given architecture is in direct accordance with the 
current trends of heterogeneous SoC integration and 
low-power neuromorphic design. Its applicability to 
commercial FD-SOI package casing also allows it to be 
migrated into automotive-level AI control units, assis-
tive robotics driving systems, and edge vision systems 
in which deterministic latency and scalability of power 
are essential. The system-level reuse of the compute 
and IMC clusters is another characteristic that promotes 
IP-level reuse across industrial design flows, which 
would increase the possibilities of multivendor collab-
oration. On the research aspect, the architecture pro-
vides the same platform to study how cross-layers can 
be optimized in the future using an algorithmic sparsity, 
mixed-signal processing, and dynamic voltage control of 
VLSI systems. 

Future Works

In spite of the fact that the proposed energy-aware VLSI 
architecture has already registered the realization of 
substantial increase in energy efficiency and real-time 
flexibility, there exist avenues in which the work can be 
further developed. The designs will be expanded fur-
ther to the scale of computational intelligence and hard-
ware resilience by providing cross-layer optimizations of 
device, circuit, and algorithm space.

The integration of nonvolatile memory (NVM) memory 
technology such as phase-change memory (PCM) and 
magneto resistive RAM (MRAM) in the in-memory com-
pute (IMC) fabric is the first significant enhancement. 
They can store the neural weights and neural internal 
states as opposed to when deep sleep or power-gated 
mode is necessitated because these NVM arrays do 
not require volatile SRAM or DRAM. This would enable 
immediate context regeneration upon awakening, which 
would basically minimize the delay associated with 
startup, as well as eliminate the overheads that would 
be attributed to resettling parameters of off-chip mem-
ory. In particular, this type of hybrid is particularly 
desirable when edge nodes are used with small bat-
teries and the robotic actors are duty-cycled and their 
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standard hardware abstraction layers (HALs) and run-
time schedulers that expose accelerator heterogeneous 
memory hierarchy and DVFS controls.

Finally, other structural works, such as 3D-stacked 
integration and chiplet-based modular topology, will 
have even more dense performance, but they can be 
employed to regulate thermal dissipation. TSVs or hybrid 
bonding can permit vertically integrated degrees of 
computer-memory which considerably reduces the cost 
of data movement. By colocating them with intelligent 
thermal-conscious floor planning and workload migra-
tion policies, such designs can be made more energy-
efficient at a sustained AI workload.

In summary, self-optimizing, nonvolatile, and photon-
ics-enhanced VLSI platform, a single platform that is 
able to learn, adapt, and communicate efficiently under 
real-time conditions, including robotics, drones, and 
next-generation IoT systems, will be the research direc-
tion in the future.
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