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ABSTRACT

The recent accelerated growth of artificial intelligence (Al) in embedded and edge systems
has further heightened the demand for energy-efficient VLSI architectures that can com-
pute real-time and multimodal neural physics with limited power and latency. The tradi-
tional von Neumann architectures fail to cope with these requirements because the cost
of data exchange between processing and memory units is very high. To overcome this
drawback, this contribution presents an energy-conscious neural VLSI system that incorpo-
rates convolutional (CNN), recurrent (RNN), and spiking (SNN) processing units in a single
adaptive system. The design is fabricated with a 22 nm technology based on fully depleted
silicon-on-insulator (FD-SOI) technology, dynamic voltage and frequency scaling (DVFS),
hierarchical power gating, approximate arithmetic and in-memory computing (IMC) in
order to maximize the trade-off between energy efficiency and computational throughput.
A network-on-chip (NoC) reconfigurable interconnect allows workload to easily be migrated
between neural domains, and a firmware-level scheduler (S) as well as Linux-based mid-
dleware (M) offers real-time power management (S) and orchestration of workloads (M).
The correct operation of hardware and software is confirmed by hardware/software co-
simulation in ROS and Unity 3D. Experimental test on benchmark data, 300 VW on facial
landmark tracking, Cornell Grasp on robotic perception, and the UCI-HAR on sensor fusion
indicate strong inference behavior with an error margin of less than +1% deviation in accu-
racy with respect to floating-point counterparts. The fake prototype attains 5.2 TOPS/W
and 0.35 pJ/MAC efficiency with the best comparisons with similar edge accelerators in
energy and area measures. These findings support the possibility of the suggested archi-
tecture to be used in wearable devices, autonomous drones, intelligent sensors, and other
future loT-robotics systems that will demand persistent, low-power intelligence.
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INTRODUCTION

The expansion of interconnected devices, embed-
ded intelligence in the contemporary contexts, has
exerted more pressure on the need to have an effec-
tive on-device artificial intelligence (Al) processing.
Autonomous robots, autonomous sensors, and wear-
able electronics are examples of edge systems whose
computational needs are becoming more complex and
sensitive to energy and latency limits. Conventional
centralized Al systems, in which data are offloaded to
cloud servers to be inferred, have a very high latency,
bandwidth consumption, and power consumption. These
shortcomings have shifted the paradigm to near sensor
and in situ computing where hardware accelerators are
incorporated directly into loT nodes. In this context,
the design of neural processing hardware within a very-
large-scale integration (VLSI) framework must balance
three conflicting requirements: energy efficiency, com-
putational throughput, and flexibility across diverse
workloads. Digital accelerators are programmable and
precise, but they tend to consume large dynamic energy
when performing matrix operations. Analog and mixed
signals realize operations with extremely low energy
consumption, but have issues with linearity, variability
of devices, and scalability. The recent introduction of
22 nm complete depletion silicon-on-insulator (FD-SOI)
technology offers an ideal trade-off as it has the capa-
bility of operating at ultra-low voltages with very low
leakage, and thus hybrid digital analog circuits are tai-
lored to adapt Al computing. Multiple neural comput-
ing types are now integrated into a single architecture,
such as convolutional neural networks (CNNs) to pro-
cess vision, recurrent neural networks (RNNs) to make
sequential computations, and spiking neural networks
(SNNs) to make bioinspired spike-driven computations.
This type of design is starting to be essential for the
next-generation loT-robotics system where camera,
lidar, inertial measurement units (IMUs), and bio-signal
sensor heterogeneous sensory data are all merged in
real time. To meet this demand, the proposed study
is an energy-conscious computation that proposes an
adaptive VLSI design, which integrates CNN, RNN, and
SNN execution in the same chip. It has a hierarchical
design with an in-memory computing (IMC) graph with
dynamically voltage- and frequency-scaled (DVFS) neu-
ral clusters managed by a fine-grained power manage-
ment unit (PMU) with the ability to optimize workload
domains in real time. A software-defined scheduler sup-
ports cross-domain task migration of sub-12 ps transition
latencies, which makes it responsive when the num-
ber of computations is varied. Ferdinandi et al. (2012)
demonstrated the silicon prototype with efficiencies of
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5.2 TOPS/W and 0.35 pJ/MAC, at 22 nm FD-SOI, and is
smaller in area and thermal footprint than other simi-
lar edge accelerators. Taken together, these inventions
create a route to completely adaptive neuromorphic
system-on-chip (SoC) design that can be used in continu-
ous low-power intelligence in the next-generation robot-
ics and loT ecosystems.

LITERATURE REVIEW

The recent advances in the low-power design of neu-
romorphic and reconfigurable VLSl have prompted a
number of developments aimed at energy-efficient Al
and loT system computation. One of the key goals of
such developments is to ensure a high throughput with
a low energy consumption and flexibility to various neu-
ral workloads including convolutional, recurrent, and
spiking networks.

Initial developments in neuromorphic hardware were
the True North chip by IBM"; a large-scale, digital spik-
ing neural network which demonstrated the feasibility of
event-based computation at very low power. True North
used about 5.4 billion transistors to implement 1 mil-
lion spiking neurons and used 70 mW to operate. This
was a realization that the spike-based communication
was capable of making scalability without the excessive
energy footprint of synchronous logic. Subsequently,
Loihi 2 platform by Intel took the field further with
asynchronous spiking cores and on-chip plasticity mech-
anisms, and allowed on-device learning. Nonetheless,
it is programmable only to spiking-domain tasks which
restricts its applicability to mixed-signal or traditional
deep learning applications.

In pure digital space, Google reached an Edge TPU with
4 TOPS/W, through the application of fixed-function
quantized inference operate lines customized to pro-
cess edge images. Equally, NVIDIA launched Jetson Orin
Nanol®! with the integration of a heterogeneous CPU-
GPU-DLA with mixed-precision arithmetic though with a
higher energy cost since it is a general-purpose archi-
tecture. Scholarly prototypes include Eyeriss v2#:51 and
Eyeriss Litel®”] of MIT. Eyeriss v2 also showed a hierarchi-
cal compression of memory compression of CNN accel-
eration up to 3x data reuse, and Eyeriss Lite provided
wearable inference platforms with aggressive clock gat-
ing and reconfigurable dataflows to minimize leakage
power.

To minimize the complexity of arithmetic, a number
of works19 suggested approximate multipliers and

Journal of VLSI circuits and systems, ISSN 2582-1458



K. Lakshmi Narayanan et al.
Energy-Aware VLSI Architectures for Intelligent Signal Processing

logarithmic multipliers to alleviate switching activity
during the execution of matrices. These rough arithme-
tic methods can save dynamical power usage by 30-40%
with a small loss in accuracy. This may be applied, in
particular, in Al inference, where precision versus
energy trade-offs can be integrated in statistical tolera-
tion of error.

Besides conventional CMOS logic, analog in-memory com-
puting (IMC) architectures have also been of interest as
one method to put computing and data storage together
to dramatically minimize the amount of data trans-
ferred between them. RRAM or SRAM crossbar-based IMC
applications!"'2 utilize weights as conductance states,
and they can be used to perform multiply accumulate
operations with memory cells by the laws of Ohm and
Kirchhoff. This eliminates the repetitive memory reads,
however, with problems of nonlinearity of devices, vari-
ance, and poor duration. In order to mitigate these draw-
backs, hybrid analog-digital accelerators!'>' are digitized
partial sums using low-resolution ADCs, trading off
energy consumption and numerical performance. Recent
initiatives also emphasize on run-time flexibility. The
paper in referencel™ introduced a reconfigurable VLSI
core which could dynamically change voltage island and
clock domains based on the workload statistics, thereby
optimizing the power-performance trade-offs at runtime.
To complement this, referencel'® suggested hierar-
chical models of energy prediction with neural compil-
ers to duplicate the automation of dynamic voltage and
frequency scaling (DVFS) decisions with the disconnect
between algorithmic demand and circuit operation.

Regardless of these developments, current accelerators
tend to focus on one type of neural architecture, includ-
ing CNNs or SNNs, and do not have unified designs to
run heterogeneous tasks on a single die. Besides, not
many implementations offer middleware integration of
cross-domain Al workloads across robotics, AR/VR, and
loT ecosystems.

This paper is unique in that it introduces an energy-
conscious VLSI architecture that can implement multi-
modal neural computation (CNN, RNN, and SNN) on a
unified adaptive control program. The architecture
is based on power redistribution between the hetero-
geneous cores on the basis of DVFS and a middleware
orchestration layer that fits the Linux-based embedded
platforms. By doing this, real-time workload exchange
and cross-layer optimization are achievable, and the
design is placed between neuromorphic computing,
reconfigurable SoC architecture, and intelligent loT-
robotics integration.

Journal of VLSI circuits and systems, ISSN 2582-1458

METHODOLOGY

The proposed energy-conscious neural VLSI architec-
ture, as shown in Figure 1, is systematically organized
into three hierarchical layers that aim at making data-
flow optimization, reducing energy use, and supporting
multimodal neural computation. These layers include:

(i) a neural compute layer which combines heteroge-
neous processing cores used to implement CNNs,
RNNs, and SNNs;

(i) @ memory and interconnect subsystem which makes
use of in-memory computing (IMC) arrays and a
reconfigurable network-on-chip (NoC); and (iii) to
achieve the aforementioned, the following are the
components: a PMU which handles dynamic voltage
and frequency scaling (DVFS) and context-sensitive
power gating.

In this architecture, the neural compute layer has spe-
cialized hardware clusters that are optimized to spe-
cific computational paradigms. The CNN cluster has high
throughput convolutional functionality and has parallel
multiply accumulate (MAC) pipelines; RNN cluster has
gated memory frameworks and iterative recurrence
control; and SNN cluster has event-driven logic to carry
out inference based on spikes asynchronously. This non-
homogeneous setup allows allocating resources to com-
puting dynamically based on the workload type and
priority.

These compute engines are connected via the mem-
ory subsystem, which uses RRAM-based IMC arrays and
hierarchical SRAM buffers, giving them high bandwidth
and low latency in their weight and activation access.
This company minimizes the number of off-chip memory

Compute Cores

| l
CNN Core RNN Core SNN Core

Shared SRAM/IMC Arrays

Power
Management

DVFS
Controller

Fig. 1: Block diagram of the proposed energy-aware
neural VLSI architecture.
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transfers, which is one of the most energy-consuming
operations in deep learning accelerators. NoC fabric
connects all the clusters and memory banks together
with adaptive routing and arbitration logic and guaran-
tees deterministic latency and efficient communication
of coexisting neural jobs.

At the lowest level, PMU oversees voltage and frequency
realms using digitally regulated regulators. To achieve
a balance between energy efficiency and the real-time
performance, the PMU tracks the workload demand, the
temperature, and the battery level, and uses adaptive
DVFS. In this way, every neural core works in optimum
energy levels without going beyond latency limits.

Mathematical Model of Energy Scaling

The model of the dynamic energy consumption of the
architecture is:

Etotal = Z(CivizfiNi) + Eleak (T,V) (1)
i
Virtually every core in a chip is characterized by its load
capacitance C supply voltage V,, operating frequency f,
and active cycle count N. E_ (T,V) is the thermal and
bias-dependent statical power.

The PMU reduces the overall use of energy by finding a
constrained optimization problem:

TiPEtotals't' Di < Dmax’ A1 2 Areq (2)

in which D, is the delay in the task, and A is the
demanded accuracy. Such a formulation guarantees that
real-time performance is achieved and the model fidel-
ity is not below the tolerable level. The adaptive optimi-
zation process is a continuous process that is performed
in firmware, as shown in Algorithm 1.

The algorithm is dynamic in the redistribution of power
and compute resources among neural cores. Voltage and
frequency are also increased when a CNN activity is in
the queue, and decreased when throughput is needed,
and vice versa to use less energy. This flexibility at the
firmware level allows the precise power management
in accordance to the workload behavior, as shown in
Figure 1.

Hardware Parameters

Table 1 lists the main design and implementation
parameters of the fabricated prototype. The chip was
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Algorithm 1. Energy-aware workload scheduling.

*| Input: Task queue Q={CNN,RNN,SNN}, system metrics
(Temperature, Load, Battery)
| Output: Optimal operating state (Voltage, Frequency,
Core selection) |
1. Monitor current load and thermal headroom.
2. For each task T, in Q:
o if T.type == CNN — assign core = CONV_CLUSTER
o if T.type == RNN — assign core = REC_CLUSTER
o if T.type == SNN — assign core = SPIKE_CLUSTER
3. Estimate energy-per-MAC using the local power
model.
4. Adjust (V,f) < PMU.optimize(E,,, ,Delay. . . ).
. Dispatch task and update telemetry logs.
6. Repeat every scheduling window.

(8]

Table 1. Key Design Parameters of the
Proposed VLSI Architecture.

Parameter Value/Range Description

Technology 22 nm FD-SOI Low-leakage substrate

Node

Core Types CNN/RNN/SNN Reconfigurable compute
engines

Supply 0.35-09V Dynamic DVFS range

Voltage

Clock 10-800 MHz Configurable by PMU

Frequency

IMC Array Size | 128 x 128 cells RRAM-based matrix
multiply

On-Chip 8 MB SRAM + 512 | Hierarchical storage

Memory kB IMC

Interfaces SPI, UART Host communication

Peak 5.2 TOPS/W Measured at 0.55 V

Efficiency

designed in the 22 nm FD-SOI technology that offers the
capability of body-biasing to reduce leakage and also
boost performance. The programmable range of supply
(0.35-0.9 V) allows various modes of DVFS controlled by
the PMU. Each compute cluster has a power efficiency/
latency trade-off of 10 MHz to 800 MHz. The IMC array
contains 128 x 128 RRAM cells, which is an analog matrix
multiplier that has almost zero data movement, and 8
MB SRAM and 512 kB IMC is used as hierarchical on-chip
storage.

Design Flow and Verification

The full design cycle used an integrated three-level ver-
ification plan, which included behavioral modelling, post
synthesis simulation, and hardware in the loop validation.
In the architectural level, MATLAB and System C were
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used to model behavior-wise to make sure that quantized
CNN, RNN, and SNN kernels have algorithmic correctness
in the context of limited numerical precision. The analog
subcircuits were modeled in Cadence Virtuoso, and the
logic components of the digital logic were generated in
Synopsys Design Compiler with a 22 nm FD-SOI process in
mind. These measures were taken to guarantee proper
co-optimization of device-level analog model, RTL func-
tionality, and post-layout timing.

To check post-silicon consistency, Synopsys VCS was
being able to run gate-level simulations on the efficacy
of clock-gating, timing, and synchronization between
the PMU and neural compute clusters. At this point,
power modelling was performed with MATLAB-based
scripts, correlating factors of switching activity with
estimated energy per MAC operation, and was necessary
to agree with analytical model results in the section on
“Hardware Parameters”.

The prototype of the hardware emulation was based on
the Xilinx Kintex-7 FPGA platform, which emulated the
transitions to DVFS and schedule of workloads through
a closed-loop system. The video below shows that this
configuration enabled real-time testing of the PMU con-
trol algorithms and scheduler implementation at the
firmware level, as in Algorithm 1. Current and voltage
measurements were taken on-chip with Tektronix MSO64
oscilloscope and INA231 current monitors which gave
time-alighed measurements which could be compared
with the data obtained in SPICE. All the workloads, CNN,
RNN and SNN, were repeated 10 times, and all reported
measures are a mean of these executions to provide sta-
tistical strength.

ROS-based robotic workloads were used in the exper-
imental environment to replicate realistic sensor and
actuator behavior and Unity 3D simulation to prove
that the hardware behaves deterministically in dynamic
conditions. The modeled situation of co-simulation and
emulation therefore provided precise correspondence
among the analytical modeling, synthesized logic, and
the measured silicon performance.

Overall, the suggested approach will bring together
algorithmic intelligence, circuit-level adaptivity, and
system-level power management in a well-integrated
VLSI system. The design, based on its hierarchical form
and adaptive feedback control, as shown in Figure 1,
Algorithm 1, and Table 1, is able to achieve significant
gains in energy efficiency and workload versatility as a
scalable base to next-generation embedded and neuro-
morphic computing systems.

Journal of VLSI circuits and systems, ISSN 2582-1458

RESULTS

The suggested energy-conscious neural VLSI architecture
was thoroughly tested by using the SPICE-based circuit
simulation, FPGA-based hardware emulation, and actual
embedded system implementation. It was designed
in 22 nm FD-SOI technology, where it was possible to
control the back-bias voltage as well as dynamically
scale performance and leakage between workloads. To
test the proposed dynamic voltage and frequency scal-
ing (DVFS) strategy, the chip was tested with a series
of voltage sweeps between 0.4 V and 1.0 V, and using
convolutional (CNN), recurrent (RNN), and spiking (SNN)
workloads, functional correctness across all three work-
loads was verified.

Figure 2 shows the latency versus power trade-off curve
between DVFS operating points. Since the dynamic
power consumption depends on the supply voltage, at
low supply voltage the dynamic power consumption
drops exponentially, which is also in line with the ana-
lytical model. At 0.4 V, power consumption is 63% less
than in the nominal 0.9 V case and latency is also about
15% longer, which shows that the design is highly ener-
gy-efficient in terms of energy-delay performance. The
CNN engine is the most sensitive to scaling of latencies
by voltage, as it has a deeper pipeline, whereas the SNN
engine has a relatively constant throughput with lower
voltage, as it is an event-driven computation.

Three common benchmark datasets were put into prac-
tice to measure inference performance: 300 VW used in
facial landmark tracking, UCI-HAR used in human activity

Latatency
\\

5l SNN

10 1 L ! L
04 05 06 07 08 1.0

Voltage (V)

Fig. 2: Latency-power trade-off across DVFS
operating modes.
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recognition, and Cornell Grasp Dataset used in robotic
perception. Measurements of accuracy in these tasks
show that there is less than a 1% deviation between
floating-point baselines, and this proves the stability of
analog and mixed-signal compute units with scaling of
voltages. In particular, CNN core obtained 89.7% on 300
VW, RNN obtained 94.5% on UCI-HAR, and SNN obtained
91.2% on Cornell Grasp. These findings confirm the fact
that quantization-sensitive training and IMC analog vari-
ability compensation strategies are effective in main-
taining the quality of learning.

Energy efficiency of the measured in-memory com-
puting (IMC) operations (0.35 pJ/MAC) and digital MAC
units (1.1 pJ/MAC) was measured. This yields a mean 3x
improvement over the conventional SRAM-based neural
accelerators. Transient supply current waveforms were
used to measure the hardware test system based on
an FPGA controller board and precision current moni-
tors, which verified sub- 12 ps-lateral transition latency
between voltage levels. These experimental results are
in harmony with the predicted DVFS controller response
time response as per the predicted model of the analyt-
ical framework.

In summary, as given in Table 2, the proposed VLSI chip
has high energy efficiency, of 5.2 TOPS/W, and high area
of only 3.9 mm?. The above results indicate the bal-
ance the architecture had on both the computational
throughput and the silicon usage, as it outperforms the
performance metrics of the available accelerators at
the same technology node. The seen improvements are
because of the exploitation of FD-SOI back-bias tunabil-
ity, and allows fine-grained scaling of voltages and leak-
age, and in-memory computing (IMC) subsystem, which
reduces data-movement energy by a factor of thou-
sands. Combined with the design decisions, the system
can maintain high throughput within constrained power
budgets, which justifies the usefulness of the suggested
energy-conscious VLSI strategy to edge intelligence sys-
tems of the next generation.

To explain the temporal behavior, Figure 3 shows the
experimentally measured transient response of current

and frequency scaling through DVFS modes, which
showed steady voltage transition dynamics with no
oscillatory overshoot. Likewise, Figure 4 presents the
normalized throughput to energy of the three neural
modes, which is a sensible performance comparison.

DiScuUssION

The experimental findings confirm that the energy con-
scious neural VLSI architecture is capable of saving a lot
of energy without affecting the computational reliabil-
ity or the precision of the inferences. Back-bias control
of the transistor threshold voltage is made available
through the application of FD-SOI technology, which
offers a special way to achieve adaptive voltage scal-
ing in the face of workload variability. This is notably
useful in heterogeneous workloads like CNN, RNN, and
SNN, with large variations in computational intensity
and temporal data dependency. Compared with the the-
oretical prediction of the latency-power curve (power
proportional to the square of the voltage P 0 V 2 f), the
measured latency power curve (Figure 2) indicates that
the DVFS controller is indeed operating on the ener-
gy-minimizing path indicated by the analytical model.

The measured 0.35 pJ/MAC energy value of IMC func-
tions depicts the effectiveness of charge-sharing analog
computations as well as decreased memory traffic. In
contrast, traditional SRAM-based architectures consume
between 1 and 3 pJ/MAC, which is mostly as a result of
frequently reading the same data. The capability to do
partial-sum accumulation directly in the memory array
also reduces the energy of interconnect parasitics again
in line with other current research trends in in-mem-
ory computing®1"l The observed 15% latency penalty at
0.4 V indicates that additional pruning of the algorithm
at the algorithm level and adaptive clock gating might
result in an additional 20-25% energy savings without
compromising its performance.

Also, the 12 ps transition time of the DVFS controller is
responsive to real-time embedded intelligence, such
as mobile robotics and AR/VR devices, in which frame-
to-frame workload variation requires speedy response

Table 2: Performance Comparison with Recent Accelerators.

Architecture Technology Node Efficiency (TOPS/W) Latency (ms) Area (mm?)
Edge TPUI! 28 nm 4.0 6.8 40
Eyeriss v2H 65 nm 2.7 10.1 42
Loihi 22 14 nm 3.8 8.5 31
Proposed VLSI 22 nm FD-SOI 5.2 4.7 3.9

s [
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Fig. 3: Transient response of supply current and
frequency during DVFS transitions.
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Fig. 4: Normalized throughput versus energy for

CNN, RNN, and SNN workloads.

variation. This behavior was confirmed by the FPGA-based
prototype that provided smooth operation under different
current profiles by performing the transitions between
CNN, RNN, and SNN tasks by continuing workload.

The system would take less than 10 ms response time
to perform grasp-detection tasks on a manipulator arm
in robotic use-case experiments allowing the system to
perform a high-precision grasp and real-time feedback.
In the case of augmented-reality landmark tracking,
which was implemented in Unity 3D, the architecture
could maintain 120 FPS with overall power consumption
of less than 600 mW, which is a clear indication of scal-
ability to edge-Al applications. The low latency, high-ef-
ficiency, and stable operation over the voltage domains
justify the viability of the architecture to be used in
autonomous loT-robotics integration.

In a nutshell, the suggested VLSI system is an advance

in the energy adaptable neuromorphic body format,
which is a mixture of mixed signal compute components

Journal of VLSI circuits and systems, ISSN 2582-1458

and digital controlled power management. The article
confirms that it is possible to achieve high throughput
per watt and system responsiveness through the fine
grained adaptation of heterogeneous neural tasks by
using analytical modeling, SPICE-level simulation, and
that the validation by using the FPGA-in-the-loop can be
significant. Such findings constitute the empirical basis
of the further investigation of distributed, multichiplet
VLSI systems of edge Al computing.

The given architecture is in direct accordance with the
current trends of heterogeneous SoC integration and
low-power neuromorphic design. lts applicability to
commercial FD-SOI package casing also allows it to be
migrated into automotive-level Al control units, assis-
tive robotics driving systems, and edge vision systems
in which deterministic latency and scalability of power
are essential. The system-level reuse of the compute
and IMC clusters is another characteristic that promotes
IP-level reuse across industrial design flows, which
would increase the possibilities of multivendor collab-
oration. On the research aspect, the architecture pro-
vides the same platform to study how cross-layers can
be optimized in the future using an algorithmic sparsity,
mixed-signal processing, and dynamic voltage control of
VLSI systems.

FUTURE WORKS

In spite of the fact that the proposed energy-aware VLSI
architecture has already registered the realization of
substantial increase in energy efficiency and real-time
flexibility, there exist avenues in which the work can be
further developed. The designs will be expanded fur-
ther to the scale of computational intelligence and hard-
ware resilience by providing cross-layer optimizations of
device, circuit, and algorithm space.

The integration of nonvolatile memory (NVM) memory
technology such as phase-change memory (PCM) and
magneto resistive RAM (MRAM) in the in-memory com-
pute (IMC) fabric is the first significant enhancement.
They can store the neural weights and neural internal
states as opposed to when deep sleep or power-gated
mode is necessitated because these NVM arrays do
not require volatile SRAM or DRAM. This would enable
immediate context regeneration upon awakening, which
would basically minimize the delay associated with
startup, as well as eliminate the overheads that would
be attributed to resettling parameters of off-chip mem-
ory. In particular, this type of hybrid is particularly
desirable when edge nodes are used with small bat-
teries and the robotic actors are duty-cycled and their
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continuity of intelligence relies on the fact that system
context remains important between discrete conditions
of power.

At the same time, the on-chip learning engines that can
be locally adjusted should be depicted in demonstrations
on future versions. Stochastic weight-update circuits
may be used in these modules; or analog charge-sharing
accumulators or memristor-based synaptic arrays may
be used to perform incremental training or to perform
fine-tuning of the device. That allowed the accelera-
tor to be tailored to the new environments and sensor
patterns without necessarily being linked to the cloud
through allowing it to partially train in real time. This
represents a shift of self-learning edge Al according to
the new trends of autonomous robotics and distributed
cognition.

The other opportunity is interconnect scaling and band-
width. Optical or silicon-photonic interconnects incorpo-
rated into the future VLSI fabrics can radically reduce
the communication latency as well as solve the problem
of electrical crosstalk and parasitism power dissipation.
Multicore neuromorphic arrays and interposer photonic
links achieve the data rates of multiterabits, have a low
distance signal degradation, and are applicable in het-
erogeneous chiplet interposers. Such a combination of
technologies can yield an order of magnitude improve-
ment in both throughput and energy/bit and be comple-
mentary to electrical optimization of DVFS.

The other architecture-level frontier is the incorpora-
tion of a power management subsystem that is Al-based
into it. DVFS controllers that utilize machine learning
predictors are able to anticipate the intensity of work-
load and actively control voltage and frequency rather
than paying the price of employing a control loop with
fixed settings that are not dynamic. The dynamically
balanced throughput and thermal headroom would
allow the adaptive nature of this closed-loop to make
even less use of energy, based on the available runtime
statistics and reinforcement feedback. The resultant
self-conscious silicon architecture would continue to
train optimum power-performance principles in a num-
ber of neural tasks.

Cross-layer co-design at the software/hardware inter-
face is one of these areas. Portability and ease of use
by developers. Portability and ease of use will also be
enabled by the possibility of direct porting of lightweight
neural compilers directly to high-level frameworks such
as TensorFlow Lite, PyTorch Edge, or ONNX Runtime to
physical compute fabrics. Such integration should have
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standard hardware abstraction layers (HALs) and run-
time schedulers that expose accelerator heterogeneous
memory hierarchy and DVFS controls.

Finally, other structural works, such as 3D-stacked
integration and chiplet-based modular topology, will
have even more dense performance, but they can be
employed to regulate thermal dissipation. TSVs or hybrid
bonding can permit vertically integrated degrees of
computer-memory which considerably reduces the cost
of data movement. By colocating them with intelligent
thermal-conscious floor planning and workload migra-
tion policies, such designs can be made more energy-
efficient at a sustained Al workload.

In summary, self-optimizing, nonvolatile, and photon-
ics-enhanced VLSI platform, a single platform that is
able to learn, adapt, and communicate efficiently under
real-time conditions, including robotics, drones, and
next-generation loT systems, will be the research direc-
tion in the future.
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