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Abstract

RISC-V, characterized by its straightforward and open-source instruction set design, is 
becoming a compelling platform for contemporary Internet of Things devices. Dynamic 
branch prediction, especially two-level methods and history/address hashing approaches 
such as Gshare, has demonstrated significant efficacy in alleviating control hazards in pipe-
lined processors. This study introduces a five-stage (IF–ID–EX–MEM–WB) RISC-V core that 
incorporates a branch prediction unit (BPU), which merges a branch target buffer (BTB) 
and a pattern history table (PHT) featuring 256 entries with two-bit saturating counters. 
The PHT index is derived from XOR(GHR, PC[9:2]), while the BTB is refreshed utilizing the 
lower eight bits of the PC. The design was executed from RTL to GDSII with Cadence Genus, 
Conformal, and Innovus on GPDK045 (45 nm) technology, illustrating feasibility beyond 
research confined to RTL or FPGA, such as RVCoreP. RTL simulation verified the accu-
rate execution of all 37 RV32I instructions and attained roughly 90.4% accuracy in branch 
prediction for branch-intensive tasks. Postlayout results indicate that the design attained 
the target frequency (exceeding 50 megahertz), with a recorded maximum frequency of 
roughly 75 MHz. The overall power consumption of the core is around 15.078 mW across an 
area of roughly 0.69 mm², resulting in a core density of nearly 70%. These data validate the 
feasibility of employing two-level branch prediction in lightweight RISC-V microcontrollers. 
In contrast to prior RISC-V cores that either rely on simple branch handling or evaluate 
Gshare only at the RTL/FPGA level, this work delivers a fully synthesizable RV32I microcon-
troller-class core that integrates a BTB+GHR+PHT Gshare predictor and is validated through 
a complete RTL-to-GDSII ASIC flow with postlayout power–performance–area analysis in a 
45-nm standard-cell technology.
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Introduction

The open-source RISC-V instruction set architecture (ISA) 
has become a popular choice for academic and indus-
trial research due to its simplicity, modularity, and scal-
ability.[1,2] The proliferation of RISC-V cores in low-power 
embedded and Internet of Things (IoT) platforms[3,4] 
has made improving instruction-level parallelism while 
maintaining size and power consumption a major pro-
cessor design challenge. 

Pipeline performance is limited by conditional branch 
instruction control hazards, which reduce fetch effi-
ciency and increase CPI. Dynamic branch prediction is 
a well-studied method that reduces control hazards by 
predicting a branch’s outcome and target address before 
execution. Two-level adaptive branch predictors[5] and 
address/history hashing algorithms like Gshare[6] have 
outperformed static or one-bit prediction models since 
the early 1990s. The two-level model uses a Global 
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3.	 We implement the core using a complete ASIC RTL-
to-GDSII flow in GPDK045 (45 nm) and report post-
layout power–performance–area (PPA) metrics 
(frequency, power, area, and utilization), thereby 
providing silicon-level evidence of the cost and bene-
fits of employing Gshare in lightweight RV32I designs.

Further study sections are organized as follows: Section II 
describes the theoretical basis for RISC-V pipeline design 
and traditional branch prediction methods, focusing on 
Gshare. The RV32I core’s RTL design, integrated BPU, 
and ASIC physical architecture are covered in Section III. 
Results from functional simulation and postlayout PPA 
measurements are presented in Section  IV. The final 
section summarizes the contributions.

Literature Review

UC Berkeley developed the versatile, open-source 
RISC-V ISA for both educational and commercial use.[1] 
Its modular design allows architects to tailor cores to 
specific performance, area, and power constraints, in 
contrast to proprietary ISAs such as ARM or x86. Several 
open-source cores have demonstrated the practical via-
bility of RISC-V. The Rocket Chip generator[7] produces 
the in-order, five-stage Rocket core, which has become 
a common reference point for research prototypes and 
custom SoCs. BOOM[8] builds upon the same ecosys-
tem by introducing a superscalar out-of-order pipeline 
and advanced branch prediction schemes such as TAGE 
to approach the performance of contemporary com-
mercial processors. In Europe, the parallel ultra-low-
power (PULP) platform developed by ETH Zurich and 
the University of Bologna targets energy-efficient IoT 
and embedded applications and has produced SoCs and 
the Ariane/CVA6 core,[12,13] demonstrating how RISC-V 
scales from microcontroller-class designs to 64-bit Linux-
capable systems. Early commercial products such as the 
SiFive FE310 SoC,[4] which integrates the E31 RISC-V core, 
further validated RISC-V as a viable option for industrial 
manufacturing.

Across these design points, pipelined RISC-V cores share 
a common challenge: efficiently handling hazards during 
instruction execution. Control hazards caused by condi-
tional branch instructions can significantly degrade per-
formance by reducing instruction fetch efficiency and 
increasing the cycles per instruction (CPI). To mitigate 
this penalty, branch prediction has become a central 
technique for improving throughput in pipelined pro-
cessors. Early approaches relied on static schemes (e.g., 
“backward taken, forward not taken”), which are simple 
but cannot exploit dynamic program behavior. Yeh and 

History Register (GHR) to store recent branch results 
and a pattern history table (PHT) with two-bit saturating 
counters to recall prediction patterns. To reduce aliasing 
among unrelated branches and reduce hardware costs, 
the Gshare version uses an XOR operation between the 
GHR and the program counter (PC) lower-order bits.

Recently, many RISC-V implementations have tested 
lightweight and advanced branch predictors. Open-
source cores like RVCoreP[2], Rocket Chip[7], and BOOM[8] 
integrate two-level or TAGE-based predictors, leading 
to significant performance enhancements over static 
architectures. Jin et al.[9] real-time pipeline optimi-
zation strategy based on branch prediction and data 
dependency analysis advances RISC-V branch prediction 
optimization research. McFarling’s technical research 
introduced Gshare, a dynamic prediction method that 
uses an XOR operation between the GHR and the PC.[6] 
These systems often use or improve this approach. Side-
channel vulnerabilities in the branch prediction unit 
(BPU) have piqued researchers’ interest in branch pre-
dictor security.[10,11]

Despite these advances, most of the previously reported 
efforts only simulate or FPGA prototype, failing to 
demonstrate actual synthesis and postlayout (GDSII) 
viability, highlighting device physical limits. Few stud-
ies explain how to integrate a complete BPU—including 
BTB, GHR, and PHT—into a five-stage RISC-V pipeline. 
This study addresses the deficiency by designing an 
RTL-to-layout two-level Gshare-based branch predictor 
in a synthesizable RV32I core using the Cadence Genus, 
Conformal, and Innovus toolchain on GPDK045 (45 nm) 
technology. Functional correctness, improved predic-
tion accuracy on branch-intensive tasks, and competi-
tive postlayout performance show that resource-limited 
RISC-V microcontrollers can execute complex prediction 
logic.

This work makes the following contributions:

1.	 We design a five-stage, RV32I, microcontroller-class 
core that tightly integrates a two-level Gshare BPU 
comprising an eight-bit GHR, a 256-entry PHT with 
2-bit saturating counters, and a 256-entry branch 
target buffer (BTB).

2.	 We present the concrete integration of this 
BTB+GHR+PHT Gshare predictor into the pipeline, 
detailing how the IF and EX stages cooperate with 
the hazard unit to resolve branches, update predic-
tion structures, and handle mispredictions with a 
bounded penalty.
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soft core. Classical Gshare-based studies, on the other 
hand, typically focus on prediction accuracy or security 
aspects in abstract or non-RISC-V contexts and do not 
provide detailed postlayout PPA results for a simple five-
stage RV32I microcontroller-class core. Although prior 
work has thoroughly explored branch prediction accu-
racy[5,6,14,15] and microarchitectural security[10,11], most 
reported efforts rely on RTL simulation or FPGA proto-
typing and therefore do not fully reflect the physical con-
straints of VLSI implementation. As a result, empirical 
PPA data for integrating a conventional BTB+GHR+PHT 
Gshare predictor into a compact five-stage RV32I pipe-
line in a mainstream 45 nm process remain scarce, moti-
vating the ASIC-level study presented in this work.

Proposed Architecture

Figure 1 illustrates that the system is constructed on an 
RV32I RISC-V core and features a traditional five-stage 
pipeline architecture (IF, ID, EX, MEM, WB). In this orga-
nization, conditional branches are resolved in the EX 
stage, and a misprediction flushes the IF and ID stages, 
resulting in a fixed two-cycle penalty from fetch to reso-
lution. This pipeline architecture is derived from designs 
such as Rocket[7] and RVCoreP[2], which have demon-
strated efficacy in performance and implementation 
simplicity on FPGAs and ASICs.

The execution flow of an instruction commences at the 
IF (Instruction Fetch) stage, which retrieves the 32-bit 
instruction from Instruction Memory (I-Mem) according 
to the address supplied by the PC. This stage incor-
porates a Multiplexer (MUX) that selects the pc_next 
address based on predictions from the BPU, rather 
than consistently use PC+4, so enabling the pipeline 
to retrieve instructions without awaiting the branch 
outcome from the EX stage. Subsequently, during the 
Instruction Decode (ID) phase, the instruction is inter-
preted to retrieve the opcode, funct3, funct7, and 
source register (rs1, rs2) fields. These data are trans-
mitted to the Controller—a finite state machine that 
produces control signals (such as alu_ctrl and mem-
Write) for the following phases. Concurrently, the 
Register File retrieves the relevant operands for the 
execution stage. 

The EX (Execute) stage is where arithmetic and logi-
cal operations are conducted through the ALU. This is 
also the location where conditional branch instructions 
are determined. The ALU recomputes the branch tar-
get address and generates a branch_taken signal in 
EX, which is compared against the speculative direc-
tion from the BPU and forwarded to the hazard unit 

Patt’s two-level adaptive predictor[5] was a key break-
through: it separates branch history, stored in a Branch 
History Table (BHT) or GHR, from pattern history, stored 
in a PHT of 2-bit saturating counters.

McFarling refined the two-level scheme with the Gshare 
predictor,[6] which computes the PHT index by XOR-ing 
the GHR with a subset of lower-order bits from the 
branch address. By combining address and history infor-
mation, Gshare reduces destructive aliasing—where 
unrelated branches map to the same counter—while 
keeping hardware cost modest. This favorable trade-off 
has made Gshare a widely used baseline in both aca-
demic studies and industrial microarchitectures, espe-
cially for area- and power-constrained designs. Beyond 
classical two-level schemes, more sophisticated predic-
tors have been proposed to capture long-range and com-
plex correlations. The perceptron predictor of Jiménez 
and Lin[14] employs a simple neural network-like struc-
ture to learn linear correlations in branch behavior, and 
TAGE (TAgged GEometric history length), introduced 
by Seznec and Michaud,[15] organizes multiple tagged 
prediction tables with geometrically increasing history 
lengths, using a simpler predictor such as Gshare as a 
fallback. TAGE-based designs have consistently ranked 
among the top performers in championship branch pre-
diction competitions and are used in high-performance 
processors such as BOOM.

The RISC-V ecosystem has rapidly incorporated these 
branch prediction techniques. Enhanced five-stage soft 
processors such as RVCoreP[2] deploy two-level pre-
dictors on FPGA to demonstrate performance gains 
over static schemes in simple RV32I pipelines. High-
performance out-of-order cores like BOOM[8] employ 
TAGE-like predictors to compete with commercial super-
scalar CPUs. Other work has explored how branch pre-
diction interacts with pipeline timing; for example, Jin 
et al. propose a real-time optimization strategy that 
jointly considers branch prediction and data dependen-
cies in RISC-V pipelines.[9] In parallel, the BPU has been 
examined from a security perspective: Kim et al. iden-
tify side-channel vulnerabilities associated with BPU 
structures,[10] and Kocher et al. analyze how different 
predictor organizations (e.g., Gshare versus TAGE) influ-
ence the susceptibility of RISC-V cores to Spectre-style 
attacks.[11]

In summary, existing RISC-V cores such as Rocket, BOOM, 
and Ariane/CVA6 primarily target high-performance or 
Linux-capable systems and often employ relatively com-
plex branch predictors such as TAGE, while designs like 
RVCoreP evaluate two-level prediction only as an FPGA 
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entries, with each entry represented by a 2-bit satu-
rating counter. The defining characteristic of Gshare 
is its method of accessing the PHT: the index is pro-
duced using an XOR operation between the eight least 
significant bits of the PC (PC[9:2]) and the value of the 
GHR. The GHR is an eight-bit register utilized to retain 
the Taken/Not-Taken state of the eight most recent 
branches. This integrated indexing method markedly 
diminishes aliasing, which arises when distinct branches 
correspond to the same counter. The BTB, a 256-entry 
direct-mapped cache, operates concurrently with the 
PHT, storing the target address (Target PC) of previously 
encountered branches, accompanied by a tag and a valid 
bit for branch identification. In this implementation, 
each BTB entry stores a 32-bit target address, an eight-
bit tag derived from PC[9:2], and a one-bit valid flag, 
providing a compact organization suitable for microcon-
troller-class RV32I cores.

to control pc_restore and pipeline flush. Subsequently, 
the MEM (Memory Access) stage engages with the Data 
Memory (D-Mem), executing a read operation for load 
instructions and a write operation for store instructions. 
The Write Back (WB) step is tasked with writing the 
result to the Register File by picking data from either 
the ALU or D-Memory via a multiplexer.

In addition to the primary data flow, a vital element is 
the hazard unit, responsible for overseeing and coordi-
nating data flow across stages to guarantee proper pipe-
line functionality. It employs two fundamental ways to 
accomplish this. Data forwarding addresses Read-After-
Write (RAW) problems by transmitting results directly 
from the EX or MEM stage to the ALU inputs during 
the EX stage. The second solution is pipeline stalling, 
employed to address load-use dangers when the out-
come of a load command is not yet available. Upon 
identifying this conflict, the Hazard Unit introduces a 
“bubble” into the pipeline and suspends the IF–ID stages 
for one cycle to maintain data integrity.

A two-level Gshare (two-level adaptive branch predic-
tor) BPU was developed and incorporated directly into 
the Instruction Fetch step of the pipeline to mitigate 
control hazards. The Gshare algorithm was selected for 
its ideal equilibrium between precision and hardware 
expenditure, markedly surpassing static predictors while 
being considerably less complex than sophisticated mod-
els such as TAGE.[15]

Figure 2 depicts the BPU architecture, which com-
prises three primary blocks. The fundamental element 
is the PHT, a predictive memory of 256 direct-mapped 

Fig. 2: Architecture of the BPU

Fig. 1: Architecture of the RISC-V processor
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see the updated global history and target information. 
Upon a misprediction (when the IF prediction diverges 
from the EX result), a flush signal is triggered to elimi-
nate the erroneously fetched instructions and revert the 
PC to the accurate location (pc_restore). This method 
results in a penalty of roughly two cycles; however, it 
substantially decreases the overall frequency of pipeline 
stalls when branches are accurately predicted.

Results

The design underwent thorough verification in three 
stages: RTL functional verification, branch prediction 
performance assessment, and physical (ASIC) imple-
mentation to provide Power–Performance–Area (PPA) 
metrics. The findings indicate that the RISC-V RV32I 
core, when combined with the Gshare two-level branch 
predictor, attains functional stability, elevated predic-
tion accuracy, and commendable resource efficiency. 
For clarity, this section first summarizes the functional 
verification, then explains the branch prediction bench-
marking method, and finally describes the postlayout 
PPA extraction procedure used to obtain the reported 
numbers.

The RTL code was simulated and validated via Cadence 
Xcelium and Vivado Simulator. All 37 instructions in the 
base RV32I instruction set (comprising R, I, S, B, U, and 
J formats) were evaluated using specific test cases to 
verify the functional accuracy of each component. 
The simulation waveform results, depicted in Figure 4, 
demonstrate that the pipeline accurately handles R, I, 
and S-type instruction categories. Memory (Load/Store) 
and Register File access operations were executed pre-
cisely, demonstrating the accuracy of the Datapath and 
memory access control logic.

Simultaneously, the hazard unit was validated using 
data conflict scenarios, encompassing RAW and load-
use risks. The simulation results demonstrated that 
the data forwarding, and pipeline stalling methods 
functioned correctly, ensuring the pipeline operated 
seamlessly without any deadlocks. A comprehensive 
test program, comprising four nested for-loops, was 
completed successfully, demonstrating that the entire 
pipeline, including the BPU, functions correctly under 
actual operating conditions. For the branch predic-
tion evaluation, this benchmark was augmented with 
two hardware counters: a “TotalBranches” counter, 
which is incremented whenever the controller decodes 
a conditional branch instruction in the ID stage, and a 
“Mispredictions” counter, which is incremented when-
ever the BPU asserts the flush signal in the EX stage 

In each fetch cycle, the current PC (Branch PC) is uti-
lized to simultaneously query both the PHT and the BTB. 
The PHT employs the Gshare index (PC[9:2] ⊕ GHR[7:0]) 
to access the two-bit counter, thus ascertaining the 
expected direction (Taken or Not-Taken). Concurrently, 
the BTB is accessed utilizing the PC address to ascertain 
whether it constitutes a hit or a miss. When the PHT 
counter shows a “Taken” state and the BTB indicates a 
“hit,” the MUX in the IF stage will choose the target PC 
from the BTB as the Next Fetch Address. Otherwise, the 
pipeline continues to retrieve progressively using PC+4. 
This approach enables the pipeline to consistently pre-
pare for the subsequent instruction retrieval, even prior 
to the determination of the actual branch conclusion 
in the EX stage. From a pipeline perspective, a branch 
instruction therefore spends one cycle in IF (speculative 
fetch on the predicted path), one cycle in ID (decoding 
and operand read), and is finally resolved in EX; if the 
prediction is correct, the subsequent instructions pro-
ceed without interruption, whereas an incorrect predic-
tion triggers a flush and PC redirection.

The accuracy of a prediction is validated solely after the 
branch instruction is determined in the Execute (EX) 
step. The actual outcome (Taken or Not-Taken) is relayed 
to the BPU to update all three components. The GHR 
register is shifted left by one bit, with the new actual 
outcome entered as the least significant bit. The two-bit 
counter at the relevant Gshare index in the PHT is mod-
ified (incremented if Taken, decremented if Not-Taken) 
in accordance with the saturating principle illustrated in 
Figure 3. If the branch was indeed “Taken,” the BTB is 
updated with the (PC, Target PC) pair, and its valid bit 
is assigned a value of 1. All three structures (GHR, PHT, 
BTB) are updated in the same cycle when the branch 
reaches EX, so that subsequent branches immediately 

Fig. 3: State diagram of a 2-bit saturating counter
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The accuracy rate is determined using the formula:

Mispredictions
Accuracy = 1  × 100%

Total Branches
æ ö
ç ÷
è ø

where

•	Mispredictions refer to the quantity of erroneous 
predictions.

•	TotalBranches refers to the aggregate count of branch 
instructions. 

to recover from an incorrect prediction. The resulting 
counts of TotalBranches and Mispredictions, together 
with the derived accuracy, are summarized in Table 1.

The efficacy of the eight-bit Gshare BPU was assessed 
by the simulation of a test program comprising several 
conditional branches. The findings are encapsulated in 
Table 1. The core executed 23,321 conditional branches 
with 2,234 mispredictions, corresponding to an accu-
racy of approximately 90.4%. The Gshare predictor 
thus provides a substantial improvement over simple 
static schemes such as Always Taken or Backward Taken 
Forward Not-Taken, which typically achieve only 60–70% 
accuracy, while still incurring modest hardware over-
head. Although it is less accurate than more advanced 
predictors such as TAGE[15] or the perceptron predictor,[14] 
Gshare remains a suitable choice for lightweight RV32I 
pipelines where area and power are critical constraints.

Fig. 4: Waveform of simulation results for R, I, and S instruction groups

Table 1: Branch prediction performance of the BPU Gshare

Parameter Value

Total Branches 23,321

Mispredictions 2,234

Accuracy ≈ 90.4%

Misprediction Penalty 2 cycles
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affirm that the design adheres to physical specifications 
and is suitable for actual manufacturing.

A postlayout simulation was conducted using Cadence 
Xcelium, employing an RC-extracted gate-level netlist 
to validate the design’s accuracy considering realistic 
delays. The waveform findings presented in Figure 6 
demonstrate that the output signals (DataOrReg, Value, 
Address, Check_address) function reliably and align 
with the RTL simulation, confirming that the pipeline 
upholds both functional and timing accuracy postphys-
ical synthesis.

Table 3 provides a comparative analysis of the design’s 
competitiveness against other prominent RISC-V 
initiatives.

In contrast to Ckristian et al., that design employed the 
older TSMC 130 nm technology, attaining a higher fre-
quency of 160 MHz while consuming greater power at 
26.72 mW.[12] The reduced area (0.12 mm²) results from 
the utilization of SRAM macro blocks, in contrast to the 
existing design, which employs register-based memory 
for I-Mem and D-Mem—an appropriate selection for the 
dimensions of a microcontroller core. In contrast to 
Zaruba et al., the Ariane (CVA6) core is designed for the 
high-performance 64-bit segment, manufactured using 
22 nm FD-SOI technology,[13] achieves a frequency of 
1.7 GHz, and supports Linux. The present study, despite 
its reduced frequency, concentrates on a lightweight 
32-bit microcontroller architecture, emphasizing energy 
economy and synthesizability. Miyazaki et al. employed 

The design was completely executed utilizing the RTL-
to-GDSII process with Cadence tools on GPDK045 (45 nm) 
technology. The procedure commenced with logic syn-
thesis utilizing Genus to transform the RTL code into an 
efficient gate-level netlist. The functional equivalence of 
this netlist was subsequently validated against the orig-
inal RTL with Conformal LEC. Subsequently, the Innovus 
tool executed the Place and Route (PnR) procedure. 

Figure 5 illustrates the design outcome following the 
placement (cell arrangement) and Clock Tree Synthesis 
phases, prior to the completion of the final routing (wir-
ing) stage. All verification procedures, including logic 
equivalence check (LEC), design rule check (DRC), and 
layout versus schematic (LVS), were successfully com-
pleted, confirming manufacturability. Table 2 presents 
the postlayout findings, indicating a maximum frequency 
of 75 MHz, total power consumption of 15.078 mW, a 
cell area of roughly 0.69 mm², and a design density of 
around 69.9%. The successful DRC and LVS verifications 

Table 2: PPA parameters of the RV32I+Gshare 
core (postlayout, 45 nm)

Parameter Value

Technology GPDK 45 nm

Max Frequency (Fmax) 75 MHz

Total Power (@75MHz) 15.078 mW

Cell Area ~0.69 mm²

Design Density 69.90%
Fig. 5: Layout image of the core after placement and 

CTS steps

Fig. 6: Postlayout simulation waveform of the RC-extracted netlist
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viable, both functionally and physically, paving the way 
for the development of compact, energy-efficient, and 
more intelligent RISC-V microprocessors in the future.
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dated, effectively replicating all 37 instructions in the 
foundational RV32I set, while incorporating a complete 
BPU that includes a BTB, GHR, and PHT with 2-bit sat-
urating counters. The design attained over 90% branch 
prediction accuracy, a postlayout operating frequency 
(Fmax) of approximately 75 MHz, total power consump-
tion of about 15.078 mW, a core size of approximately 
0.69  mm², and a cell density of approximately 69.9%, 
indicating a proficient equilibrium between perfor-
mance and hardware resources.

This work’s focal point is the execution of the compre-
hensive ASIC design process from RTL to GDSII utilizing 
the Cadence Genus, Conformal, and Innovus toolchain 
on GPDK045 (45 nm) technology. The design successfully 
passed LEC, DRC, and LVS checks, confirming the accu-
racy of the RTL description and the physical layout. This 
initiative represents a substantial advancement beyond 
projects limited to simulation or FPGA, confirming the 
Gshare two-level branch prediction algorithm’s complete 
feasibility for implementation in actual RISC-V microcon-
trollers. This study has shown that incorporating a two-
level Gshare algorithm into an RISC-V pipeline is totally 

Table 3: Results comparison with other RISC-V designs

Parameter This Work [12] [13] [2]

ISA RV32I (Gshare) RV32IM RV64G (Linux-ready) RV32I (Two-level)

Technology GPDK 45 nm TSMC 130 nm 22 nm FD-SOI Xilinx Artix-7

Frequency 75 MHz 160 MHz 1.7 GHz 150 MHz

Power 15.08 mW 26.72 mW N/A N/A

Area ~0.69 mm² 0.12 mm² 1.51 mm² N/A
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