
68 Journal of VLSI circuits and systems, ISSN 2582-1458

RESEARCH ARTICLE

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 7, No. 2, 2025 (pp. 68–76)
WWW.VLSIJOURNAL.COM

Implementation of an Efficient RISC-V Processor
Featuring a Novel Gshare Branch Prediction

Technique
Tri-Duc Ta1,2,3*, Thanh-Phat Nguyen1,3, Quoc-Thinh Tran1,3

1ASICLAB, University of Information Technology, Ho Chi Minh City, Vietnam.
2Faculty of Electronics and Telecommunication, The University of Science, Ho Chi Minh City, Vietnam.

3Vietnam National University, Ho Chi Minh City, Vietnam.

Abstract

RISC-V, characterized by its straightforward and open-source instruction set design, is
becoming a compelling platform for contemporary Internet of Things devices. Dynamic
branch prediction, especially two-level methods and history/address hashing approaches
such as Gshare, has demonstrated significant efficacy in alleviating control hazards in pipe-
lined processors. This study introduces a five-stage (IF–ID–EX–MEM–WB) RISC-V core that
incorporates a branch prediction unit (BPU), which merges a branch target buffer (BTB)
and a pattern history table (PHT) featuring 256 entries with two-bit saturating counters.
The PHT index is derived from XOR(GHR, PC[9:2]), while the BTB is refreshed utilizing the
lower eight bits of the PC. The design was executed from RTL to GDSII with Cadence Genus,
Conformal, and Innovus on GPDK045 (45 nm) technology, illustrating feasibility beyond
research confined to RTL or FPGA, such as RVCoreP. RTL simulation verified the accu-
rate execution of all 37 RV32I instructions and attained roughly 90.4% accuracy in branch
prediction for branch-intensive tasks. Postlayout results indicate that the design attained
the target frequency (exceeding 50 megahertz), with a recorded maximum frequency of
roughly 75 MHz. The overall power consumption of the core is around 15.078 mW across an
area of roughly 0.69 mm², resulting in a core density of nearly 70%. These data validate the
feasibility of employing two-level branch prediction in lightweight RISC-V microcontrollers.
In contrast to prior RISC-V cores that either rely on simple branch handling or evaluate
Gshare only at the RTL/FPGA level, this work delivers a fully synthesizable RV32I microcon-
troller-class core that integrates a BTB+GHR+PHT Gshare predictor and is validated through
a complete RTL-to-GDSII ASIC flow with postlayout power–performance–area analysis in a
45-nm standard-cell technology.

Authors’ e-mail ID: ductt@uit.edu.vn, phatnt@uit.edu.vn, thinhtq@uit.edu.vn

Authors’ ORCID IDs: 0000-0001-9458-012X, 0009-0003-4835-5599, 0009-0006-9743-4535

How to cite this article: Tri-Duc Ta, Thanh-Phat Nguyen, Quoc-Thinh Tran, Implementation
of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique,
Journal of VLSI Circuits and System, Vol. 7, No. 2, 2025 (pp. 68–76).

KEYWORDS:
RISC-V,
VLSI,
Branch prediction,
Gshare,
BTB,
PHT,
GHR

ARTICLE HISTORY:
Received:	 18.11.2025
Revised:	 10.12.2025
Accepted:	 18.12.2025

DOI:
https://doi.org/10.31838/JCVS/07.02.08

Introduction

The open-source RISC-V instruction set architecture (ISA)
has become a popular choice for academic and indus-
trial research due to its simplicity, modularity, and scal-
ability.[1,2] The proliferation of RISC-V cores in low-power
embedded and Internet of Things (IoT) platforms[3,4]
has made improving instruction-level parallelism while
maintaining size and power consumption a major pro-
cessor design challenge.

Pipeline performance is limited by conditional branch
instruction control hazards, which reduce fetch effi-
ciency and increase CPI. Dynamic branch prediction is
a well-studied method that reduces control hazards by
predicting a branch’s outcome and target address before
execution. Two-level adaptive branch predictors[5] and
address/history hashing algorithms like Gshare[6] have
outperformed static or one-bit prediction models since
the early 1990s. The two-level model uses a Global

WWW.VLSIJOURNAL.COM�

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

69Journal of VLSI circuits and systems, ISSN 2582-1458

3.	 We implement the core using a complete ASIC RTL-
to-GDSII flow in GPDK045 (45 nm) and report post-
layout power–performance–area (PPA) metrics
(frequency, power, area, and utilization), thereby
providing silicon-level evidence of the cost and bene-
fits of employing Gshare in lightweight RV32I designs.

Further study sections are organized as follows: Section II
describes the theoretical basis for RISC-V pipeline design
and traditional branch prediction methods, focusing on
Gshare. The RV32I core’s RTL design, integrated BPU,
and ASIC physical architecture are covered in Section III.
Results from functional simulation and postlayout PPA
measurements are presented in Section IV. The final
section summarizes the contributions.

Literature Review

UC Berkeley developed the versatile, open-source
RISC-V ISA for both educational and commercial use.[1]
Its modular design allows architects to tailor cores to
specific performance, area, and power constraints, in
contrast to proprietary ISAs such as ARM or x86. Several
open-source cores have demonstrated the practical via-
bility of RISC-V. The Rocket Chip generator[7] produces
the in-order, five-stage Rocket core, which has become
a common reference point for research prototypes and
custom SoCs. BOOM[8] builds upon the same ecosys-
tem by introducing a superscalar out-of-order pipeline
and advanced branch prediction schemes such as TAGE
to approach the performance of contemporary com-
mercial processors. In Europe, the parallel ultra-low-
power (PULP) platform developed by ETH Zurich and
the University of Bologna targets energy-efficient IoT
and embedded applications and has produced SoCs and
the Ariane/CVA6 core,[12,13] demonstrating how RISC-V
scales from microcontroller-class designs to 64-bit Linux-
capable systems. Early commercial products such as the
SiFive FE310 SoC,[4] which integrates the E31 RISC-V core,
further validated RISC-V as a viable option for industrial
manufacturing.

Across these design points, pipelined RISC-V cores share
a common challenge: efficiently handling hazards during
instruction execution. Control hazards caused by condi-
tional branch instructions can significantly degrade per-
formance by reducing instruction fetch efficiency and
increasing the cycles per instruction (CPI). To mitigate
this penalty, branch prediction has become a central
technique for improving throughput in pipelined pro-
cessors. Early approaches relied on static schemes (e.g.,
“backward taken, forward not taken”), which are simple
but cannot exploit dynamic program behavior. Yeh and

History Register (GHR) to store recent branch results
and a pattern history table (PHT) with two-bit saturating
counters to recall prediction patterns. To reduce aliasing
among unrelated branches and reduce hardware costs,
the Gshare version uses an XOR operation between the
GHR and the program counter (PC) lower-order bits.

Recently, many RISC-V implementations have tested
lightweight and advanced branch predictors. Open-
source cores like RVCoreP[2], Rocket Chip[7], and BOOM[8]
integrate two-level or TAGE-based predictors, leading
to significant performance enhancements over static
architectures. Jin et al.[9] real-time pipeline optimi-
zation strategy based on branch prediction and data
dependency analysis advances RISC-V branch prediction
optimization research. McFarling’s technical research
introduced Gshare, a dynamic prediction method that
uses an XOR operation between the GHR and the PC.[6]
These systems often use or improve this approach. Side-
channel vulnerabilities in the branch prediction unit
(BPU) have piqued researchers’ interest in branch pre-
dictor security.[10,11]

Despite these advances, most of the previously reported
efforts only simulate or FPGA prototype, failing to
demonstrate actual synthesis and postlayout (GDSII)
viability, highlighting device physical limits. Few stud-
ies explain how to integrate a complete BPU—including
BTB, GHR, and PHT—into a five-stage RISC-V pipeline.
This study addresses the deficiency by designing an
RTL-to-layout two-level Gshare-based branch predictor
in a synthesizable RV32I core using the Cadence Genus,
Conformal, and Innovus toolchain on GPDK045 (45 nm)
technology. Functional correctness, improved predic-
tion accuracy on branch-intensive tasks, and competi-
tive postlayout performance show that resource-limited
RISC-V microcontrollers can execute complex prediction
logic.

This work makes the following contributions:

1.	 We design a five-stage, RV32I, microcontroller-class
core that tightly integrates a two-level Gshare BPU
comprising an eight-bit GHR, a 256-entry PHT with
2-bit saturating counters, and a 256-entry branch
target buffer (BTB).

2.	 We present the concrete integration of this
BTB+GHR+PHT Gshare predictor into the pipeline,
detailing how the IF and EX stages cooperate with
the hazard unit to resolve branches, update predic-
tion structures, and handle mispredictions with a
bounded penalty.

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

70 Journal of VLSI circuits and systems, ISSN 2582-1458

soft core. Classical Gshare-based studies, on the other
hand, typically focus on prediction accuracy or security
aspects in abstract or non-RISC-V contexts and do not
provide detailed postlayout PPA results for a simple five-
stage RV32I microcontroller-class core. Although prior
work has thoroughly explored branch prediction accu-
racy[5,6,14,15] and microarchitectural security[10,11], most
reported efforts rely on RTL simulation or FPGA proto-
typing and therefore do not fully reflect the physical con-
straints of VLSI implementation. As a result, empirical
PPA data for integrating a conventional BTB+GHR+PHT
Gshare predictor into a compact five-stage RV32I pipe-
line in a mainstream 45 nm process remain scarce, moti-
vating the ASIC-level study presented in this work.

Proposed Architecture

Figure 1 illustrates that the system is constructed on an
RV32I RISC-V core and features a traditional five-stage
pipeline architecture (IF, ID, EX, MEM, WB). In this orga-
nization, conditional branches are resolved in the EX
stage, and a misprediction flushes the IF and ID stages,
resulting in a fixed two-cycle penalty from fetch to reso-
lution. This pipeline architecture is derived from designs
such as Rocket[7] and RVCoreP[2], which have demon-
strated efficacy in performance and implementation
simplicity on FPGAs and ASICs.

The execution flow of an instruction commences at the
IF (Instruction Fetch) stage, which retrieves the 32-bit
instruction from Instruction Memory (I-Mem) according
to the address supplied by the PC. This stage incor-
porates a Multiplexer (MUX) that selects the pc_next
address based on predictions from the BPU, rather
than consistently use PC+4, so enabling the pipeline
to retrieve instructions without awaiting the branch
outcome from the EX stage. Subsequently, during the
Instruction Decode (ID) phase, the instruction is inter-
preted to retrieve the opcode, funct3, funct7, and
source register (rs1, rs2) fields. These data are trans-
mitted to the Controller—a finite state machine that
produces control signals (such as alu_ctrl and mem-
Write) for the following phases. Concurrently, the
Register File retrieves the relevant operands for the
execution stage.

The EX (Execute) stage is where arithmetic and logi-
cal operations are conducted through the ALU. This is
also the location where conditional branch instructions
are determined. The ALU recomputes the branch tar-
get address and generates a branch_taken signal in
EX, which is compared against the speculative direc-
tion from the BPU and forwarded to the hazard unit

Patt’s two-level adaptive predictor[5] was a key break-
through: it separates branch history, stored in a Branch
History Table (BHT) or GHR, from pattern history, stored
in a PHT of 2-bit saturating counters.

McFarling refined the two-level scheme with the Gshare
predictor,[6] which computes the PHT index by XOR-ing
the GHR with a subset of lower-order bits from the
branch address. By combining address and history infor-
mation, Gshare reduces destructive aliasing—where
unrelated branches map to the same counter—while
keeping hardware cost modest. This favorable trade-off
has made Gshare a widely used baseline in both aca-
demic studies and industrial microarchitectures, espe-
cially for area- and power-constrained designs. Beyond
classical two-level schemes, more sophisticated predic-
tors have been proposed to capture long-range and com-
plex correlations. The perceptron predictor of Jiménez
and Lin[14] employs a simple neural network-like struc-
ture to learn linear correlations in branch behavior, and
TAGE (TAgged GEometric history length), introduced
by Seznec and Michaud,[15] organizes multiple tagged
prediction tables with geometrically increasing history
lengths, using a simpler predictor such as Gshare as a
fallback. TAGE-based designs have consistently ranked
among the top performers in championship branch pre-
diction competitions and are used in high-performance
processors such as BOOM.

The RISC-V ecosystem has rapidly incorporated these
branch prediction techniques. Enhanced five-stage soft
processors such as RVCoreP[2] deploy two-level pre-
dictors on FPGA to demonstrate performance gains
over static schemes in simple RV32I pipelines. High-
performance out-of-order cores like BOOM[8] employ
TAGE-like predictors to compete with commercial super-
scalar CPUs. Other work has explored how branch pre-
diction interacts with pipeline timing; for example, Jin
et al. propose a real-time optimization strategy that
jointly considers branch prediction and data dependen-
cies in RISC-V pipelines.[9] In parallel, the BPU has been
examined from a security perspective: Kim et al. iden-
tify side-channel vulnerabilities associated with BPU
structures,[10] and Kocher et al. analyze how different
predictor organizations (e.g., Gshare versus TAGE) influ-
ence the susceptibility of RISC-V cores to Spectre-style
attacks.[11]

In summary, existing RISC-V cores such as Rocket, BOOM,
and Ariane/CVA6 primarily target high-performance or
Linux-capable systems and often employ relatively com-
plex branch predictors such as TAGE, while designs like
RVCoreP evaluate two-level prediction only as an FPGA

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

71Journal of VLSI circuits and systems, ISSN 2582-1458

entries, with each entry represented by a 2-bit satu-
rating counter. The defining characteristic of Gshare
is its method of accessing the PHT: the index is pro-
duced using an XOR operation between the eight least
significant bits of the PC (PC[9:2]) and the value of the
GHR. The GHR is an eight-bit register utilized to retain
the Taken/Not-Taken state of the eight most recent
branches. This integrated indexing method markedly
diminishes aliasing, which arises when distinct branches
correspond to the same counter. The BTB, a 256-entry
direct-mapped cache, operates concurrently with the
PHT, storing the target address (Target PC) of previously
encountered branches, accompanied by a tag and a valid
bit for branch identification. In this implementation,
each BTB entry stores a 32-bit target address, an eight-
bit tag derived from PC[9:2], and a one-bit valid flag,
providing a compact organization suitable for microcon-
troller-class RV32I cores.

to control pc_restore and pipeline flush. Subsequently,
the MEM (Memory Access) stage engages with the Data
Memory (D-Mem), executing a read operation for load
instructions and a write operation for store instructions.
The Write Back (WB) step is tasked with writing the
result to the Register File by picking data from either
the ALU or D-Memory via a multiplexer.

In addition to the primary data flow, a vital element is
the hazard unit, responsible for overseeing and coordi-
nating data flow across stages to guarantee proper pipe-
line functionality. It employs two fundamental ways to
accomplish this. Data forwarding addresses Read-After-
Write (RAW) problems by transmitting results directly
from the EX or MEM stage to the ALU inputs during
the EX stage. The second solution is pipeline stalling,
employed to address load-use dangers when the out-
come of a load command is not yet available. Upon
identifying this conflict, the Hazard Unit introduces a
“bubble” into the pipeline and suspends the IF–ID stages
for one cycle to maintain data integrity.

A two-level Gshare (two-level adaptive branch predic-
tor) BPU was developed and incorporated directly into
the Instruction Fetch step of the pipeline to mitigate
control hazards. The Gshare algorithm was selected for
its ideal equilibrium between precision and hardware
expenditure, markedly surpassing static predictors while
being considerably less complex than sophisticated mod-
els such as TAGE.[15]

Figure 2 depicts the BPU architecture, which com-
prises three primary blocks. The fundamental element
is the PHT, a predictive memory of 256 direct-mapped

Fig. 2: Architecture of the BPU

Fig. 1: Architecture of the RISC-V processor

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

72 Journal of VLSI circuits and systems, ISSN 2582-1458

see the updated global history and target information.
Upon a misprediction (when the IF prediction diverges
from the EX result), a flush signal is triggered to elimi-
nate the erroneously fetched instructions and revert the
PC to the accurate location (pc_restore). This method
results in a penalty of roughly two cycles; however, it
substantially decreases the overall frequency of pipeline
stalls when branches are accurately predicted.

Results

The design underwent thorough verification in three
stages: RTL functional verification, branch prediction
performance assessment, and physical (ASIC) imple-
mentation to provide Power–Performance–Area (PPA)
metrics. The findings indicate that the RISC-V RV32I
core, when combined with the Gshare two-level branch
predictor, attains functional stability, elevated predic-
tion accuracy, and commendable resource efficiency.
For clarity, this section first summarizes the functional
verification, then explains the branch prediction bench-
marking method, and finally describes the postlayout
PPA extraction procedure used to obtain the reported
numbers.

The RTL code was simulated and validated via Cadence
Xcelium and Vivado Simulator. All 37 instructions in the
base RV32I instruction set (comprising R, I, S, B, U, and
J formats) were evaluated using specific test cases to
verify the functional accuracy of each component.
The simulation waveform results, depicted in Figure 4,
demonstrate that the pipeline accurately handles R, I,
and S-type instruction categories. Memory (Load/Store)
and Register File access operations were executed pre-
cisely, demonstrating the accuracy of the Datapath and
memory access control logic.

Simultaneously, the hazard unit was validated using
data conflict scenarios, encompassing RAW and load-
use risks. The simulation results demonstrated that
the data forwarding, and pipeline stalling methods
functioned correctly, ensuring the pipeline operated
seamlessly without any deadlocks. A comprehensive
test program, comprising four nested for-loops, was
completed successfully, demonstrating that the entire
pipeline, including the BPU, functions correctly under
actual operating conditions. For the branch predic-
tion evaluation, this benchmark was augmented with
two hardware counters: a “TotalBranches” counter,
which is incremented whenever the controller decodes
a conditional branch instruction in the ID stage, and a
“Mispredictions” counter, which is incremented when-
ever the BPU asserts the flush signal in the EX stage

In each fetch cycle, the current PC (Branch PC) is uti-
lized to simultaneously query both the PHT and the BTB.
The PHT employs the Gshare index (PC[9:2] ⊕ GHR[7:0])
to access the two-bit counter, thus ascertaining the
expected direction (Taken or Not-Taken). Concurrently,
the BTB is accessed utilizing the PC address to ascertain
whether it constitutes a hit or a miss. When the PHT
counter shows a “Taken” state and the BTB indicates a
“hit,” the MUX in the IF stage will choose the target PC
from the BTB as the Next Fetch Address. Otherwise, the
pipeline continues to retrieve progressively using PC+4.
This approach enables the pipeline to consistently pre-
pare for the subsequent instruction retrieval, even prior
to the determination of the actual branch conclusion
in the EX stage. From a pipeline perspective, a branch
instruction therefore spends one cycle in IF (speculative
fetch on the predicted path), one cycle in ID (decoding
and operand read), and is finally resolved in EX; if the
prediction is correct, the subsequent instructions pro-
ceed without interruption, whereas an incorrect predic-
tion triggers a flush and PC redirection.

The accuracy of a prediction is validated solely after the
branch instruction is determined in the Execute (EX)
step. The actual outcome (Taken or Not-Taken) is relayed
to the BPU to update all three components. The GHR
register is shifted left by one bit, with the new actual
outcome entered as the least significant bit. The two-bit
counter at the relevant Gshare index in the PHT is mod-
ified (incremented if Taken, decremented if Not-Taken)
in accordance with the saturating principle illustrated in
Figure 3. If the branch was indeed “Taken,” the BTB is
updated with the (PC, Target PC) pair, and its valid bit
is assigned a value of 1. All three structures (GHR, PHT,
BTB) are updated in the same cycle when the branch
reaches EX, so that subsequent branches immediately

Fig. 3: State diagram of a 2-bit saturating counter

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

73Journal of VLSI circuits and systems, ISSN 2582-1458

The accuracy rate is determined using the formula:

Mispredictions
Accuracy = 1 × 100%

Total Branches
æ ö
ç ÷
è ø

where

•	Mispredictions refer to the quantity of erroneous
predictions.

•	TotalBranches refers to the aggregate count of branch
instructions.

to recover from an incorrect prediction. The resulting
counts of TotalBranches and Mispredictions, together
with the derived accuracy, are summarized in Table 1.

The efficacy of the eight-bit Gshare BPU was assessed
by the simulation of a test program comprising several
conditional branches. The findings are encapsulated in
Table 1. The core executed 23,321 conditional branches
with 2,234 mispredictions, corresponding to an accu-
racy of approximately 90.4%. The Gshare predictor
thus provides a substantial improvement over simple
static schemes such as Always Taken or Backward Taken
Forward Not-Taken, which typically achieve only 60–70%
accuracy, while still incurring modest hardware over-
head. Although it is less accurate than more advanced
predictors such as TAGE[15] or the perceptron predictor,[14]
Gshare remains a suitable choice for lightweight RV32I
pipelines where area and power are critical constraints.

Fig. 4: Waveform of simulation results for R, I, and S instruction groups

Table 1: Branch prediction performance of the BPU Gshare

Parameter Value

Total Branches 23,321

Mispredictions 2,234

Accuracy ≈ 90.4%

Misprediction Penalty 2 cycles

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

74 Journal of VLSI circuits and systems, ISSN 2582-1458

affirm that the design adheres to physical specifications
and is suitable for actual manufacturing.

A postlayout simulation was conducted using Cadence
Xcelium, employing an RC-extracted gate-level netlist
to validate the design’s accuracy considering realistic
delays. The waveform findings presented in Figure 6
demonstrate that the output signals (DataOrReg, Value,
Address, Check_address) function reliably and align
with the RTL simulation, confirming that the pipeline
upholds both functional and timing accuracy postphys-
ical synthesis.

Table 3 provides a comparative analysis of the design’s
competitiveness against other prominent RISC-V
initiatives.

In contrast to Ckristian et al., that design employed the
older TSMC 130 nm technology, attaining a higher fre-
quency of 160 MHz while consuming greater power at
26.72 mW.[12] The reduced area (0.12 mm²) results from
the utilization of SRAM macro blocks, in contrast to the
existing design, which employs register-based memory
for I-Mem and D-Mem—an appropriate selection for the
dimensions of a microcontroller core. In contrast to
Zaruba et al., the Ariane (CVA6) core is designed for the
high-performance 64-bit segment, manufactured using
22 nm FD-SOI technology,[13] achieves a frequency of
1.7 GHz, and supports Linux. The present study, despite
its reduced frequency, concentrates on a lightweight
32-bit microcontroller architecture, emphasizing energy
economy and synthesizability. Miyazaki et al. employed

The design was completely executed utilizing the RTL-
to-GDSII process with Cadence tools on GPDK045 (45 nm)
technology. The procedure commenced with logic syn-
thesis utilizing Genus to transform the RTL code into an
efficient gate-level netlist. The functional equivalence of
this netlist was subsequently validated against the orig-
inal RTL with Conformal LEC. Subsequently, the Innovus
tool executed the Place and Route (PnR) procedure.

Figure 5 illustrates the design outcome following the
placement (cell arrangement) and Clock Tree Synthesis
phases, prior to the completion of the final routing (wir-
ing) stage. All verification procedures, including logic
equivalence check (LEC), design rule check (DRC), and
layout versus schematic (LVS), were successfully com-
pleted, confirming manufacturability. Table 2 presents
the postlayout findings, indicating a maximum frequency
of 75 MHz, total power consumption of 15.078 mW, a
cell area of roughly 0.69 mm², and a design density of
around 69.9%. The successful DRC and LVS verifications

Table 2: PPA parameters of the RV32I+Gshare
core (postlayout, 45 nm)

Parameter Value

Technology GPDK 45 nm

Max Frequency (Fmax) 75 MHz

Total Power (@75MHz) 15.078 mW

Cell Area ~0.69 mm²

Design Density 69.90%
Fig. 5: Layout image of the core after placement and

CTS steps

Fig. 6: Postlayout simulation waveform of the RC-extracted netlist

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

75Journal of VLSI circuits and systems, ISSN 2582-1458

viable, both functionally and physically, paving the way
for the development of compact, energy-efficient, and
more intelligent RISC-V microprocessors in the future.

Acknowledgement

This research was supported by the VNUHCM University
of Information Technology’s Scientific Research Support
Fund.

References

1.	 Waterman, A., Lee, Y., Asanović, K., & Patterson, D. “The
RISCV Instruction Set Manual. Volume 1: User-level ISA,
version 2.0,” UC Berkeley Dept of EE and CS, Tech. Rep.,
2014.

2.	 Miyazaki, H., et al. (2020). RVCoreP: an optimized RISC-V
soft processor of five-stage pipelining. IEICE Transactions
on Information and Systems, 103(12), 2494–2503.

3.	 Schiavone, P. D., et al. (2021). Arnold: an eFPGA-
augmented RISC-V SoC for flexible and low-power IoT end
nodes. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 29(4), 677–690.

4.	 SiFive, Inc. SiFive E31 Core Complex Manual v1p2,
2024 https://static.dev.sifive.com/E31-RISCVCoreIP.pdf
(accessed on December 10, 2024).

5.	 Yeh, T.-Y., & Patt, Y. N. (1991). Two-level adaptive train-
ing branch prediction. In: Proceedings of the 24th annual
international symposium on Microarchitecture.

6.	 McFarling, S. Combining branch predictors. Vol. 49.
Technical Report TN-36, Digital Western Research
Laboratory, 1993.

7.	 Asanovic, K., et al. (2016). The rocket chip generator.
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17 4.

8.	 Celio, C., et al. (2017). BOOMv2: an open-source out-
of-order RISC-V core. In: First Workshop on Computer
Architecture Research with RISC-V (CARRV).

9.	 Jin, Z., Di, H., Hu, T., & Wang, P. (2025). Real-Time
Optimization of RISC-V Processors Based on Branch
Prediction and Division Data Dependency. Applied
Sciences, 15(2), 632. https://doi.org/10.3390/app15020632

10.	 Kim, J., Jang, H., & Shin, Y. (2025). A survey of side-
channel attacks on branch prediction units. ACM
Computing Surveys, 57(11), 1–36.

11.	 Kocher, P., et al. (2020). Spectre attacks: exploit-
ing speculative execution. Communications of the
ACM, 63(7), 93–101.

the RVCoreP core to develop a five-stage pipeline and a
two-level predictor;[2] nevertheless, their research was
limited to an FPGA soft-core implementation, without
physical PPA data. This research advances to the prac-
tical ASIC level, offering precise quantitative data for
a Gshare-integrated RISC-V pipeline, thus addressing
the deficiency of experimental data present in current
studies.

Conclusion

This study has finalized the design, simulation, and
ASIC implementation of a five-stage RISC-V processor,
incorporating a two-level Gshare branch prediction
algorithm. The findings indicate that the branch predic-
tion algorithm functions accurately, can be physically
implemented, and operates efficiently in resource-con-
strained settings.

The RV32I core was comprehensively built and vali-
dated, effectively replicating all 37 instructions in the
foundational RV32I set, while incorporating a complete
BPU that includes a BTB, GHR, and PHT with 2-bit sat-
urating counters. The design attained over 90% branch
prediction accuracy, a postlayout operating frequency
(Fmax) of approximately 75 MHz, total power consump-
tion of about 15.078 mW, a core size of approximately
0.69 mm², and a cell density of approximately 69.9%,
indicating a proficient equilibrium between perfor-
mance and hardware resources.

This work’s focal point is the execution of the compre-
hensive ASIC design process from RTL to GDSII utilizing
the Cadence Genus, Conformal, and Innovus toolchain
on GPDK045 (45 nm) technology. The design successfully
passed LEC, DRC, and LVS checks, confirming the accu-
racy of the RTL description and the physical layout. This
initiative represents a substantial advancement beyond
projects limited to simulation or FPGA, confirming the
Gshare two-level branch prediction algorithm’s complete
feasibility for implementation in actual RISC-V microcon-
trollers. This study has shown that incorporating a two-
level Gshare algorithm into an RISC-V pipeline is totally

Table 3: Results comparison with other RISC-V designs

Parameter This Work [12] [13] [2]

ISA RV32I (Gshare) RV32IM RV64G (Linux-ready) RV32I (Two-level)

Technology GPDK 45 nm TSMC 130 nm 22 nm FD-SOI Xilinx Artix-7

Frequency 75 MHz 160 MHz 1.7 GHz 150 MHz

Power 15.08 mW 26.72 mW N/A N/A

Area ~0.69 mm² 0.12 mm² 1.51 mm² N/A

Tri-Duc Ta et al.
Implementation of an Efficient RISC-V Processor Featuring a Novel Gshare Branch Prediction Technique

76 Journal of VLSI circuits and systems, ISSN 2582-1458

14.	 Jiménez, D. A., & Lin, C. (2001). Dynamic branch pre-
diction with perceptrons. In: Proceedings HPCA Seventh
International Symposium on High-Performance Computer
Architecture. IEEE.

15.	 Seznec, A., & Michaud, P. (2006). A case for (partially)
tagged geometric history length branch prediction. The
Journal of Instruction-Level Parallelism, 8, 23.

12.	 Duran, C., et al. (2017). A system-on-chip platform for the
internet of things featuring a 32-bit RISC-V based micro-
controller. In: 2017 IEEE 8th Latin American Symposium
on Circuits & Systems (LASCAS). IEEE.

13.	 Zaruba, F., & Benini, L. (2019). The cost of applica-
tion-class processing: energy and performance analy-
sis of a Linux-ready 1.7-GHz 64-bit RISC-V core in 22-nm
FDSOI technology. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 27(11), 2629–2640.

