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ABSTRACT

This paper presents an energy-efficient VLSI architecture for time-multiplexed vibration
feature extraction and fuzzy inference targeted at conveyor gearbox condition monitoring.
A triaxial ADXL345 accelerometer mounted on the gearbox housing is sampled at 50 Hz, and
10 integer time-domain features are computed over 1 s windows. Pearson correlation anal-
ysis identifies three dominant features—z-axis peak-to-peak, z-axis Willison amplitude, and
y-axis Willison amplitude—which form the inputs of a three-class fuzzy inference system
(normal, scoring, and damaged). The proposed architecture integrates a digital sensor
interface, a two-stage feature-extraction block, and a three-stage fuzzification-inference-
defuzzification pipeline using fixed-point arithmetic and extensive time-multiplexing. Two
implementations, with eight-bit and four-bit word-lengths, are prototyped on a small low-
power programmable logic device. The four-bit variant reduces logic-cell usage from 5105
(66%) to 3550 (46%) and lowers estimated total power from 15.42 mW to 12.46 mW, while
maintaining high recall for damaged gears (97% to 96%) and sub-millisecond end-to-end
latency per decision. Power figures are obtained from vendor models based on post-route
netlists and simulated switching activity, and they are reported together with an effective
energy-per-decision estimate to characterize the suitability of the proposed architecture
for battery-powered edge deployments.
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INTRODUCTION

Condition monitoring of geared drives is crucial for pre-
dictive maintenance in conveyor-based material-handling
systems, where undetected gear faults can cause down-
time, productivity loss, and safety risks. Vibration anal-
ysis is a well-established approach because tooth wear,
scoring, and fractures leave clear signatures in gearbox
vibrations. In many plants, however, continuous moni-
toring must run at the network edge under tight con-
straints on energy, silicon area, and cost.

s [

Low-power VLSI and small programmable logic devices
now enable integrated sensing, signal processing, and
decision-making on a single edge node. Recent work
has demonstrated low-power system-on-chip architec-
ture for computation-intensive video processing, where
adaptive intra prediction, hierarchical motion esti-
mation, and clock gating are used to reduce dynamic
power under real-time H.265 encoding constraints."
Other designs present fixed-point artificial neural net-
work architecture on FPGA that serve as flexible test-
beds for training and inference, optimized for resource
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utilization and clock frequency and achieving significant
speedup over earlier implementations.’”? These exam-
ples illustrate how energy-aware architecture can be
co-designed with algorithms to meet stringent perfor-
mance and power budgets.

Beyond these system-level studies, several works
implement recurrent or convolutional neural networks on
programmable logic for time-series analysis in predictive
maintenance, biomedical signal processing, traffic-speed
prediction, and inertial or audio tasks.'2 These designs
show that milliwatt-class devices can support nontrivial
time-series models, but they typically assume rich fea-
ture sets and focus on generic neural architecture rather
than vibration-specific, tightly integrated pipelines.

Fuzzy inference systems (FISs) provide an attractive alter-
native for condition monitoring thanks to their interpret-
ability, rule-based structure, and natural compatibility
with fixed-point arithmetic. Hardware FIS implemen-
tations have been reported for power-electronics fault
detection, cosmic-ray event triggering, and environmen-
tal monitoring, using Mamdani or type-2 TSK formulations.
13181 Although these designs achieve microsecond-level
latencies and large speedups over CPUs/GPUs, they often
target medium- to high-capacity devices and rarely inte-
grate the full chain from digital sensor interface through
time-domain feature extraction to fuzzy decision-making,
with energy per decision explicitly quantified.

For vibration-based gear monitoring on a tiny fabric, two
main tensions dominate. Diagnostic performance bene-
fits from rich features and fine precision, whereas com-
pact hardware demands few integer features and short
word-length. Fully parallel pipelines minimize latency but
are expensive in logic and switching energy, while time-
multiplexing saves both at the cost of internal computation
time. This paper addresses these tensions with an end-to-
end architecture for conveyor gearboxes—digital accelerom-
eter interfacing, 1 s windowed vibration feature extraction,
and fuzzy inference for normal, scoring, and damaged con-
ditions—mapped to a fixed-point, time-multiplexed VLSI
data path. Based on an experimental dataset, we select a
small set of informative features, implement eight-bit and
four-bit variants on a low-power programmable device, and
quantify the impact of word-length reduction on power,
area, and classification performance.

The main contributions are:

1. End-to-end edge-oriented model. A compact vibra-
tion-based monitoring model for conveyor gearboxes
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using three integer time-domain features—z-axis
peak-to-peak, z-axis Willison amplitude, and y-axis
Willison amplitude—selected via correlation analysis
from a broader feature set.

2. Energy-efficient VLS| architecture. A time-
multiplexed fixed-point architecture that integrates
digital sensor acquisition, feature extraction, and a
three-stage FIS (fuzzification, rule evaluation, and
defuzzification) in a single, low-power VLSI fabric.

3. Quantized implementations and PPA study. Eight-
bit and four-bit implementations on a small iCE40-
class device, with detailed evaluation of resource
usage, timing, power, and energy per decision along-
side recall for each gear condition.

4. PPA-accuracy trade-off analysis. Evidence that the
four-bit configuration cuts logic-cell usage by =30%
and total power by =19% versus the eight-bit baseline
while preserving high recall for faulty gears, showing
that aggressive quantization and time-multiplexing
are practical levers for edge condition-monitoring
nodes.

RELATED WORK

Hardware acceleration for condition monitoring and
time-series analysis has been widely explored. Several
works implement recurrent or convolutional neural
networks on programmable logic for predictive main-
tenance, biomedical signal processing, and traffic or
inertial data analysis tasks.*20 A recent design in this
direction proposes a 16-bit fixed-point ANN architecture
on FPGA that serves as a flexible testbed for training and
inference, optimized for resource utilization and clock
frequency and achieving significant speedup over prior
implementations.!? These accelerators demonstrate that
real-time inference for time-series tasks is feasible on
programmable VLSI fabrics, but they typically rely on
relatively heavy models and do not integrate the full
path from sensor to decision logic.

FISs have also been mapped to reconfigurable and
custom hardware for real-time decision-making.
Mamdani-type fuzzy triggers have been implemented
for cosmic-ray event detection and open-circuit fault
detection in cascaded H-bridge inverters,['3'4211 while
more elaborate designs realize interval type-2 TSK FIS
engines for wildfire monitoring and multicore FIS accel-
erators for situation assessment on high-end devices.['>
'8 These works achieve microsecond-level latencies and
large speedups over CPUs/GPUs, yet generally assume
pre-computed features and large device capacities, and
they seldom report energy per decision under strict
power budgets.
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Low-power edge-oriented architecture on tiny pro-
grammable devices have been investigated for various
sensor and Al workloads. Compact neural networks for
capacitive-sensor classification and fall detection have
been deployed on small FPGAs*®, and quantized GRU/
RNN models for livestock-behavior estimation achieve
sub-mW to mW power consumption.[®'%22l Dynamic time
warping and LSTM accelerators on ultra-small devices
demonstrate that computationally intensive sequence
models can run under tight resource constraints, albeit
with high logic and memory utilization and board power
in the hundreds of milliwatts?78l, In the video domain,
a low-power H.265 SoC implementation leverages adap-
tive intra prediction, hierarchical motion estimation,
and clock gating to reduce dynamic power on a hetero-
geneous ARM-FPGA platform.["23!

Taken together, these works demonstrate that both
neural and fuzzy approaches can be efficiently accel-
erated in hardware, and that tiny FPGAs can support
nontrivial time-series models. However, most prior
designs either focus on rich neural architecture with
substantial resource usage or on FIS cores that assume
pre-computed inputs and target larger devices. They
rarely integrate the complete chain from digital sensor
interface through vibration feature extraction to fuzzy
decision-making on a very small fabric, nor do they
consistently report energy per decision. In contrast,
the present work combines carefully selected integer
time-domain features with a compact, time-multiplexed
FIS on an iCE40 HX8K, emphasizing short word-lengths
and resource reuse to achieve milliwatt-level operation
suitable for battery-powered conveyor.

VIBRATION DATASET AND FEATURE PROCESSING MODEL

The experimental setup is a belt conveyor driven by
a gearbox-motor unit instrumented with a triaxial
ADXL345 accelerometer. The sensor is rigidly mounted
on the gearbox housing near the output shaft, and its

Z Axis

Sensor placement

X Axis

Fig. 1: Placement and orientation of the triaxial
ADXL345 accelerometer on the conveyor gearbox
housing.

I

local axes are oriented so that the z-axis captures the
dominant radial vibration because of tooth meshing,
while the y-axis provides an additional radial component
sensitive to misalignment and scoring. Figure 1 illus-
trates the sensor placement and axis orientation used
throughout the experiments.

The ADXL345 is configured to a +2 g range and sam-
pled at 50 Hz via a digital serial interface. The conveyor
operates at a shaft speed of 1250 rpm under three gear
conditions: normal, scoring, and damaged. For each
condition, 1200 s of vibration are acquired, yielding 60
000 samples per axis and 1200 nonoverlapping 1 s win-
dows (50 samples) per class. These windows are split
into modelling and testing subsets and form the basis for
both fuzzy-model design and hardware validation.

The sampling rate and window length are chosen to bal-
ance diagnostic resolution and hardware complexity. At
a shaft speed of 1250 rpm, the fundamental mechanical
frequency is approximately 20.8 Hz. So, a sampling rate
of 50 Hz captures several revolutions per second and
suffices for time-domain statistics that are insensitive to
high-frequency spectral details. A 1 s window therefore
contains about 20-25 shaft rotations and 50 samples per
axis, which is long enough to stabilize the time-domain
features while keeping the number of samples, and thus
the feature-extraction logic, minimal.

For every 1 s window, 10 integer time-domain fea-
tures are computed from the y- and z-axis signals:
Willison amplitude, peak-to-peak value, zero-crossing
rate, wavelength, and slope sign change (SSC) for each
axis. Feature relevance is quantified using the Pearson
correlation coefficient between each feature and
the ordinal condition label (normal = 0, scoring = 1,
damaged = 2). Table 1 summarizes the correlations and

Table 1: Pearson correlation between integer time-domain
features (1 s windows at 50 Hz) and the ordinal gear-
condition label (normal = 0, scoring = 1, damaged = 2).

Feature Pearson correlation
z_willison_amp 0.902992
z_peak_to_peak 0.858746
y_willison_amp 0.781255
y-peak-to-peak 0.657617
Z-Zero-cross 0.353287
y-Zero-cross 0.308598
z-wavelength 0.276626
y-SsC 0.255486
Z-SSC 0.141203
y-wavelength 0.110063

Journal of VLSI circuits and systems, ISSN 2582-1458



Ahmad Sabiq et al.
Energy-Efficient VLSI Architecture for Time-Multiplexed Vibration Feature Extraction and Fuzzy Inference

shows that three features dominate: z_willison_amp
(=0.90), z_peak_to_peak (=0.86), and y_willison_amp
(=0.78), while all others are substantially lower. To
reduce hardware complexity and avoid weakly infor-
mative inputs, the FIS is therefore restricted to these
three integer features, scaled to an eight-bit fixed-point
range; the four-bit configuration is obtained by truncat-
ing the same scaled values.

For model development and evaluation, the 1200 win-
dows per condition are partitioned into disjoint model-
ling and testing subsets. In the experiments reported
here, 70% of the windows (840 per class) are used to
design the fuzzy membership functions and to tune the
decision thresholds, while the remaining 30% (360 per
class) form a held-out test set.

PROPOSED ARCHITECTURE

System-Level VLSI Architecture

Figure 2 shows the overall architecture, which imple-
ments a complete edge processing chain for conveyor
gearbox monitoring. A clock-generation block produces
a high-speed core clock (100 MHz) and two divided
clocks at 50 Hz and 1 Hz. The digital sensor inter-
face block acquires triaxial acceleration data from the
ADXL345 over a serial link at 50 Hz. A feature-process-
ing block computes the three selected time-domain fea-
tures over 1 s windows. These integer features are fed
into a pipelined FIS comprising fuzzification, rule evalu-
ation, and defuzzification stages, which jointly produce
a crisp output and a two-bit class label indicating the
gear condition.

The architecture is explicitly time-multiplexed: a small
set of arithmetic units is reused across streams, fea-
tures, and fuzzy rules. Within each 1 s window, the low-
speed 50 Hz and 1 Hz domains handle data acquisition
and window control, while the high-speed core clock
services the inner pipelines of fuzzification, inference,
and defuzzification. This separation allows the design to
meet real-time throughput requirements with modest
logic resources and low switching activity.

In terms of hardware cost, the proposed data path
is intentionally designed around extensive time-
multiplexing rather than full parallelism. A straight-
forward fully parallel implementation would allocate
separate membership-evaluation units for all input-set
combinations, distinct MIN/MAX trees for every rule,
and dedicated area and moment calculators per output
condition, leading to a much larger number of active
comparators, adders, and registers. In contrast, the
present architecture reuses a single membership core
across all three inputs and three fuzzy sets, a shared
MIN/MAX core across all rules, and a single area/moment
core for all output conditions. This serialization slightly
increases internal inference latency but keeps the num-
ber of toggling arithmetic units small, which is expected
to reduce logic-cell utilization and dynamic power; this
effect is quantified later in the experimental results
section.

Sensor Interface and SPlcomponent

The SPlcomponent module (Figure 3) provides a reusable
and technology-agnostic front-end for digital sensors. It
is organized into three hierarchical layers:
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Processing

YYY

clkdiv 50Hz data
_|—> SPI Component featurel
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[—>»{ done
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Fig. 2: Overall VLSI architecture integrating digital ADXL345 acquisition, 1 s vibration feature extraction, and
the time-multiplexed fuzzy inference system on a low-power programmable device.
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Fig. 3: SPlcomponent structure: control/sequencing
(SPImaster), physical/timing (SPlinterface), and chip-
select layer for ADXL345 access.

» A control and sequencing layer (SPImaster) that con-
tains a main finite state machine (FSM) orchestrating
all SPI transactions, including register configuration
and periodic conversions based on the 50 Hz sampling
clock.

« A physical and timing layer (SPlinterface) that hosts
the serializer/deserializer pair, the serial clock gener-
ator, and the data path for SDI/SDO. Parallel-to-serial
and serial-to-parallel conversion are time-multiplexed
through shared shift registers to reduce logic.

« A chip-select layer that manages the slave-select sig-
nal and encapsulates slave-selection logic, allowing
the same SPlcomponent to be extended to multiple
devices if required.

Transmit (transmit) and completion (done) handshakes
connect these layers: the main FSM triggers a transac-
tion, the physical layer executes the low-level bit trans-
fers, and on completion the received data are placed
into an RxBuffer and flagged as valid. The x, y, and z
axis samples are then forwarded to the feature pro-
cessing module without additional buffering, minimizing
latency and on-chip storage.

Time-Multiplexed Vibration Feature Extraction

The data processing module in Figure 4 implements
the three time-domain features using a two-stage

= I

CLES,
clk_50Hz,
clk_1Hz,
st

Stage 1: processing_core

Difference Counter Window Control
(Ordered by CLES) (Periodic Reset 1Hz)

diference_l, diferepce z E reset

() )

y_willigon_acc
z_willidon_acc

reset

~

_min, z_max

Stage 2: outplt_processing

Fig. 4: Two-stage feature-extraction block:
windowed Willison accumulation and min/max
tracking in the processing core, followed by
registered feature outputs.

architecture: processing_core and output_processing.
Inputs y_data and z_data are sampled at clk_50Hz,
while clk_1Hz defines the feature window (one second in
the present design).

In Stage 1 - processing_core, several subblocks operate
under a shared control:

« A difference unit computes sample-to-sample differ-
ences for the y- and z-axes. The same subtractor hard-
ware is time-multiplexed for both axes.

o A Willison Accumulator integrates the absolute differ-
ences that exceed a programmable threshold, yielding
y_willison_acc and z_willison_acc. The comparator
and accumulator registers are reused for both axes in
different clock cycles.

* A Min/Max finder tracks the minimum and maximum
values of the z-axis within the current window (z_min,
z_max) using a single comparator-update unit.

» A Window Control block, driven by clk_1Hz, generates
the periodic reset signals that delimit each feature
window and synchronize all accumulators.

Stage 1 thus transforms a stream of raw samples into

partial sums and extrema using a compact set of arith-
metic units, heavily shared across channels and features.
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In Stage 2 - output_processing, these partial results are
latched and converted into final feature values exactly
once per window, clocked by clk_1Hz. The Willison
accumulators are scaled and truncated to form the inte-
ger features y_willison_amp and z_willison_amp. The
peak-to-peak feature z_peak_to_peak is computed as
the difference between z_max and z_min. Because this
stage is active only at the end of each window, it can be
clock-gated for the remaining cycles, further reducing
dynamic power.

The combination of window-level control and arithmetic
reuse ensures that feature extraction meets the 50 Hz
sampling requirement while occupying a modest amount
of logic and limiting unnecessary switching activity. In
a nonmultiplexed feature extractor, the difference cal-
culator, threshold comparators, accumulators, and min/
max units would be replicated per axis and per feature,
so many arithmetic blocks would toggle in parallel at
50 Hz and at the core clock. In the proposed design,
the same subtractor, comparator, and accumulator
hardware is reused across the y and z channels under
window-level control, so only a small subset of arith-
metic units is active in each cycle, which helps contain
both logic-cell count and core dynamic power.

Pipelined FIS

The FIS is organized as a three-stage pipeline, as
depicted in Figure 5. The FIS receives the three fea-
tures and associated control signals from the feature-
extraction block. A global sequencer coordinates the
stages using simple handshake signals: each stage asserts
a completion flag, and the subsequent stage is enabled
by a corresponding enable signal. This decoupled struc-
ture allows each stage to run at an appropriate clock
rate and internal latency while maintaining an effective
throughput of one decision per feature window.

The pipeline consists of:

1. Fuzzification stage, which converts the crisp fea-
tures into membership degrees for three fuzzy sets
(low, medium, and high) per input.

2. Inference stage, which evaluates the rule base using
MIN-MAX operators to obtain fuzzy support for each
output condition (normal, scoring, and damaged).

3. Defuzzification stage, which computes a scalar out-
put via a centroid-like operation and maps it to the
final class label.

Each stage is internally time-multiplexed, so that only a

small number of membership calculators and MIN/MAX
operators are required.
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Fig. 5: Three-stage fuzzy inference pipeline
(fuzzification, rule evaluation, and defuzzification)
with handshake signals between stages.

Fuzzification Engine

The fuzzification module (Figure 6) receives the three
feature values together with clock and reset signals. At
its core is a main sequencer, driven by a moderate-rate
control clock and enabled once per second, which iter-
ates over all input-membership combinations. A small
arithmetic unit evaluates trapezoidal membership func-
tions for one feature-set pair at a time.

The membership results are passed to a result multi-
plexer and intermediate register block, which assembles
the full set of degrees (for example, z_low, z_medium,
z_high, and analogous sets for the other features) and
exposes them to the next stage. A completion signal is
raised when all memberships have been computed; the
FIS top-level then triggers the inference engine. This
scheme reuses a single membership-computation unit
for all fuzzy sets and inputs, substantially reducing area
compared with a fully parallel implementation.

Inference Engine

The inference module (Figure 7) implements the rule
evaluation using a pipelined architecture. A main
sequencer generates the sequence of rule evaluations
and controls the data flow through the module.

A multiplexer network selects the relevant membership
degrees for each rule from the fuzzification outputs.
These degrees are fed to a fuzzy operator core, which
contains shared MIN and MAX units. For each rule, the
core applies the MIN operator to compute the rule fir-
ing strength, and then uses MAX operations to aggregate
contributions across rules for each output condition.

To reduce storage overhead, intermediate rule strengths
are held in a small register bank and are reused via a
feedback multiplexer: the same aggregation hardware
iterates over the rules instead of maintaining a large
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Fig. 7: Inference engine: antecedent MUX network, shared MIN/MAX core, reuse registers, and per-class
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array of parallel accumulators. When all rules have been
processed, the aggregated values for the three output
conditions are written into a final output register and
passed to the defuzzification stage.

In this design, rule evaluation is explicitly time-
multiplexed. A naive fully parallel implementation
would instantiate a dedicated MIN/MAX tree—and possi-
bly separate antecedent logic—for every rule and output
condition, so that many comparators and adders switch
on every core clock edge. Here, the global sequencer

o0 [

instead feeds the required membership degrees to a sin-
gle shared MIN/MAX operator and a small bank of reuse
registers; aggregated supports for each output class
are accumulated iteratively via the feedback MUX. This
time-multiplexed rule processing reduces the number
of MIN/MAX units to a small constant at the cost of a
modest increase in inference latency. Since inference
is performed only once per feature window and within
a budget of hundreds of microseconds, this trade-off is
acceptable and beneficial for both resource usage and
dynamic power.
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Defuzzification Engine

The defuzzification module (Figure 8) receives the
aggregated fuzzy supports for the three output con-
ditions, along with a second LUT of triangular output
membership parameters. Its pipeline comprises four
logical stages under a unified Sequencer and Control
block:

e An input multiplexer and parameter LUT select one
output condition at a time and fetch the correspond-
ing membership parameters.

e An area calculation core, implemented as a multi-

cycle arithmetic block, computes in fixed-point the

effective membership and the contribution to the
numerator for a center-of-area-like aggregation. This
core is reused sequentially for each condition.

An intermediate result register stores the partial

membership sums and numerators for each condi-

tion. Once all three conditions have been processed,
these registers contain the sums required for the final
defuzzification.

A final aggregation and division stage combines the

stored values to compute the crisp output defuzzi_

output[7:0] and its associated two-bit class label.

The division is implemented using an iterative integer

algorithm, amortized over the full window period to

minimize area.
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Fig. 8: Defuzzification engine with parameter/load
MUX, area and moment core, per-class registers,
and final aggregation/division to obtain the
crisp output.
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The defuzzification pipeline is therefore highly serial-
ized: a single arithmetic core is reused for three output
conditions and multiple polygon segments, which sub-
stantially decreases logic utilization. Because it is trig-
gered only once per window, the impact on throughput
is negligible relative to the 1 s feature window.

Control, Clocks, and Throughput

All blocks described above are coordinated through
simple handshake signals and a small number of clock
domains. The design uses the 12 MHz on-board oscillator
as the primary reference clock. An on-chip PLL multi-
plies this reference to a 100 MHz core clock that feeds
the time-multiplexed data path while two low-frequency
clocks at 50 Hz (sensor sampling) and 1 Hz (feature win-
dow update) are generated by integer clock dividers
from the PLL output.

The high-frequency CLK (100 MHz) is used only in arith-
metic cores where multi-cycle computations are ben-
eficial (membership evaluation, MIN/MAX operators,
and area calculation). The slower CLKS clock drives the
sequencers, MUX networks, and registers that orches-
trate time-multiplexing, while clk_1Hz defines the out-
ermost period of feature and inference updates.

The top-level control ensures the following sequence
within each 1 s window: (1) continuous sampling of
accelerometer data at 50 Hz and accumulation of fea-
ture statistics; (2) once the window closes, final feature
values are latched; and (3) fuzzification, inference, and
defuzzification are executed in sequence, complet-
ing well before the next window boundary. Gate-level
simulations indicate that the total latency from feature
latching to class label is in the order of a few microsec-
onds at 100 MHz, which is orders of magnitude smaller
than 1 s and guarantees real-time operation with suffi-
cient timing margin. The multi-clock scheme, combined
with time-multiplexed functional units and window-level
gating, directly contributes to energy efficiency: only
the necessary subcircuits toggle at high frequency for
short bursts, while the rest of the architecture remains
idle or runs at very low frequency.

Fuzzy Membership Functions and Rule Base

The FIS uses three input variables—z_peak_to_peak,
z_willison_amp, and y_willison_amp—and one out-
put variable representing the gear condition. All vari-
ables are defined on the eight-bit fixed-point domains
obtained from the scaled feature ranges. Each input is
partitioned into three trapezoidal sets (low, medium,

I 5
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and high), while the output “condition” employs three
triangular sets (normal, scoring, and damaged). The
integer breakpoints (a, b, ¢, and d) for all input and out-
put membership functions are chosen from the empir-
ical feature distributions and snapped to the nearest
integers

The rule base follows a Mamdani formulation, but the
rules are derived from the labelled dataset rather
than specified purely by expert knowledge. For every
1 s window, the three features are fuzzified, and the
resulting combination of input labels (low, medium, and
high for each feature) is paired with the corresponding
ground-truth gear condition (normal, scoring, and dam-
aged). By counting how often each fuzzy-label combi-
nation co-occurs with each condition over the entire
dataset, dominant patterns are identified: for every dis-
tinct fuzzy input pattern, the condition with the highest
occurrence frequency is selected as the rule conse-
quent. These initial data-driven rules are then simplified
by merging patterns that differ only in one feature but
share the same dominant condition, replacing that fea-
ture by a wildcard to reduce redundancy while preserv-
ing interpretability.

The final rule base contains 14 Mamdani IF-THEN rules
that capture the dominant relationships between the
three fuzzified features and the gear conditions. The
same membership parameters and rule base are used
for the floating-point, 16-bit, 8-bit, and 4-bit models;
lower word-lengths are obtained by truncating the
underlying integer representation, without retraining or
retuning the rules. This design choice makes the impact
of quantization on both classification accuracy and VLSI
cost directly measurable in the experimental results.

Table 2: Integer parameters of input and output fuzzy
membership functions (eight-bit configuration).

Variable Set a b c d
z_willison_amp LOW 0 0 5 14
z_willison_amp MEDIUM 4 12 15 26
z_willison_amp HIGH 9 21 33 33
y_willison_amp LOW 0 0 7 15
y_willison_amp MEDIUM 2 9 12 20
y_willison_amp HIGH 6 15 27 27
z_peak_to_peak LOW 9 9 17 27
z_peak_to_peak MEDIUM 15 24 29 47
z_peak_to_peak HIGH 24 49 18 | 118
condition (output) | NORMAL 0 35 98 -
condition (output) | SCORING 22 83 162 -
condition (output) | DAMAGED | 55 138 255 -

%2 [ —

VLSI Prototype and Implementation Details

The proposed architecture is described in synthesizable
Verilog and prototyped on a Lattice iCE40 HX8K device
mounted on a small evaluation board. The design instan-
tiates the SPI-based ADXL345 interface, the time-domain
feature-extraction block, and the three-stage fuzzy
inference pipeline, all mapped to LUT-carry logic with-
out using embedded RAMs or DSP blocks. An on-board
12 MHz oscillator provides the primary clock input; an
on-chip PLL multiplies this clock to generate the internal
high-speed core clock used by the fuzzy pipeline, while
the 50 Hz and 1 Hz clocks for sampling and window con-
trol are derived by integer clock dividers from the same
source.

Logic synthesis is performed with Yosys, and placement
and routing with nextpnr-ice40 under a 100 MHz timing
constraint on the core clock. Post-route netlists are used
for static timing analysis and for power estimation with
the vendor’s iCE40 power models. Switching activity is
obtained from gate-level simulations driven by represen-
tative vibration traces at 50 Hz. The resource utilization
and power figures reported in the following subsections
therefore refer to a fully routed design on the HX8K
device and correspond to the same operating conditions
used in the functional simulations.

Power Evaluation Methodology

The power analysis follows the standard CMOS dynam-
ic-power model in referencel™ and distinguishes
between dynamic power in the FPGA core logic,
dynamic power in the 1/0 pins, and static power. The
total dynamic power is defined as:

P, =P__+P, (1)

dyn core

Core dynamic power is modelled as the product of the
average toggle energy and the aggregate logic-event
rate:

P _=E

core toggle

xEvents/s )
with the per-transition energy:

E :lc V2 (3)

toggle 2 eff core

Here C_. is an effective capacitance that represents the
combined load of LUTs, flip-flops, routing, and the clock
tree. The aggregate logic-event rate is approximated as:

Events/s =Y (N, & f.) 4)
k
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where N, is the number of active logic-cells in clock
domain k, «, is the average activity factor (probability
of a transition per clock cycle) in that domain, and f, is

the corresponding clock frequency.

In practice, N, and f, are obtained from the post-
place-and-route reports (Yosys/nextpnr and iCEcube2),
while «, f, is taken directly from the Seq LCs Switching
Frequency and Comb LCs Switching Frequency columns
of the lattice power estimator. Each entry in these
columns already represents the effective switching
frequency per logic-cell for that domain, so the total
logic-event rate is computed simply as the sum of N,
times the corresponding switching frequency. The effec-
tive capacitance C_. and toggle energy E gsle AT cali-
brated once by matching Equations (3)-(5) to the core
dynamic power reported by the vendor tool for the
same post-route netlist and clock configuration; the cal-
ibrated E is then reused when comparing the eight-

toggle
bit and four-bit architecture.

Dynamic 1/0 power is modelled as the sum of the capac-
itive switching power over all toggling pins:

i=1

N1
P|o = Z[ECIOJ VI(Z),i fSW,i ] 5)

where C,; is the effective load capacitance of pin i
(including package and board load), Vo, 18 the corre-
sponding 1/0-bank voltage, and fsw,,- is the effective
switching frequency derived from the interface specifi-
cation (e.g., SPI clock) and confirmed by the power esti-

mator. The total device power is then:

P

total

=P

static

+Pyyn (6)

Static power P__. is taken from the iCE40 HX8K data-
sheet for the nominal core voltage V_ = 1.2 V.

The energy per decision is finally obtained by multiply-

ing P by the decision period. Since the fuzzy pipeline

produces one condition estimate per 1 s vibration win-
dow, the average energy per decision is:

=P T T =1s 7)

decision total decision? " decision

EXPERIMENTAL RESULTS AND DISCUSSION

Functional Validation from Simulation

Figure 9 shows the simulation waveform of the SPI-based
sensor interface. The 50 Hz sampling clock (clk_50Hz)
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drives the START signal that triggers a burst transfer
on the SPI bus. During each burst, the generated serial
clock (SCLK) toggles while SS is asserted to be low, and
the sensor data words are shifted out on SDO and cap-
tured on SDI. At the end of each transaction, the parallel
registers x_axis[9:0], y_axis[9:0], and z_axis[9:0] hold
the signed accelerometer samples for the three axes.
The traces confirm correct synchronization between SS,
SCLK, and the axis registers and demonstrate that the
SPIcomponent delivers fresh sensor samples at every
20 ms period as required.

Figure 10 illustrates the subsequent feature extraction
for the y- and z-axis data. Over a 1 s interval, the z-axis
extrema (z_min, z_max) are tracked continuously,
and the peak-to-peak value z_peak_to_peak[7:0] is
updated only at the rising edge of clk_1Hz. In parallel,
the Willison accumulators y_Willison_acc[15:0] and
z_Willison_acc[15:0] integrate the thresholded abso-
lute differences between consecutive samples. At the
end of the window, these accumulators are converted
into the final integer features y_Willison_amp[5:0]
and z_Willison_amp[5:0]. The waveform shows that
intermediate accumulator values evolve monotoni-
cally within the window and are reset cleanly at each
clk_1Hz tick, confirming that the two-stage data pro-
cessing block generates one consistent triplet of fea-
tures per second.

Figures 11 and 12 present the internal behavior of the
fuzzy inference pipeline for the same input features
under eight-bit and four-bit quantization, respectively. In
both cases, the fuzzification stage successively produces
the membership degrees (z_low, z_medium, z_high,
zw_low, ..., yw_high), which then feed the rule evalu-
ation logic to produce aggregated supports for normal_
condition, scoring_condition, and damaged_condition.
The defuzzification stage accumulates the partial areas
(mu_normal, mu_scoring, and mu_damaged), and
numerators (numer_normal, numer_scoring, and numer_
damaged) compute the denominator, and finally outputs
the crisp value defuzzi_output[7:0] together with the
class label final_condition[1:0].

As expected, the four-bit configuration exhibits more
coarsely quantized membership degrees and area terms,
but the evolution of the internal signals remains qual-
itatively similar and the final class label matches the
eight-bit result for all tested windows. These waveforms
validate that the time-multiplexed pipeline and multi-
stage handshakes operate correctly across the different

word-lengths.
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Signals Waves
Time s

clk_SOH

Fig. 9: Gate-level simulation of SPI-based ADXL345 axis-data acquisition at 50 Hz.

Signals Wevies

Time

Fig. 10: Simulation of 1 s time-domain feature extraction for the y- and z-axis signals.

Sugrals s

Time

Fig. 11: Internal fuzzy inference signals for the eight-bit quantized implementation.

Resource Utilization on iCE40 HX8K

Table 3 summarizes the post-place-and-route resource
utilization of the complete design on the iCE40 HX8K
device for the eight-bit and four-bit configurations.

The architecture intentionally avoids dedicated DSP
blocks and block RAMs; all arithmetic is realized using
LUTs and carry chains, which simplifies portability to
ASIC flows. The eight-bit configuration occupies 5105
logic-cells (=66% of the device), leaving limited head-
room for additional on-chip functionality. Reducing the
word-length to four bits lowers the logic-cell count to

o I

3550 (=46%), corresponding to a =30% reduction in LUT
usage and freeing more than 1500 logic-cells for the
integration of communication stacks or higher-level con-
trol logic. The I/0 and clocking resources are essentially
unchanged between the two variants, as they are dic-
tated by the external sensor interface and global clock-
ing scheme.

Both implementations meet the 100 MHz timing con-
straint on the core clock, with additional slack in the
four-bit case because of shorter carry chains and nar-
rower data paths. Since the system issues only one fuzzy

Journal of VLSI circuits and systems, ISSN 2582-1458



Ahmad Sabiq et al.
Energy-Efficient VLSI Architecture for Time-Multiplexed Vibration Feature Extraction and Fuzzy Inference

Fig. 12: Internal fuzzy inference signals for the four-bit quantized implementation.

Table 3: Post-place-and-route hardware
resource utilization of the complete sensor-
feature-FIS pipeline on the iCE40 HX8K device
for eight-bit and four-bit configurations.

Resource | Available | Eight-bit Four-bit usage
usage

Logic-Cell | 7680 5105 (66%) 3550 (46%)

SB_IO 256 13 (5%) 13 (5%)

SB_GB 8 8 (100%) 8 (100%)

DSP - N/A N/A

PLL 2 1 (50%) 1 (50%)

decision per 1 s window, this additional timing margin
does not translate into higher throughput but provides
robustness against voltage and temperature variations.

Power and Energy Estimation

The calibrated model above is instantiated using the
vendor power data for the eight-bit configuration. In
the lattice power estimator, the clock-domain tab for
this design contains two active domains: the base clock
main|clk_in at approximately 7.89 MHz and the PLL core
clock PLLOUTCORE at approximately 49.34 MHz. For
each domain, the tool reports the number of sequential
and combinational logic-cells and their Seq/Comb LCs
Switching Frequency in MHz; these switching frequen-
cies already encode the products ¢, f, in (Equation 4).
Summing N, times the corresponding switching fre-
quency over all domains yields a total toggle rate of
about 1.16x10" events/s for the eight-bit design.

Using the vendor-reported core dynamic power for this

configuration, the toggle energy in (Equation 3) is cali-
brated to approximately:
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E__.=24x10"],

toggle

which corresponds to an effective switched capacitance
of about C_ = 3.35 pF per event at V_ = 1.2 V. The
same toggle energy, together with the total logic-cell
count and the aggregate Y (N, & f; ), implies an aver-

k
age activity factor of roughly a_, = 6.25% for the core
logic.

For the comparative analysis, this calibrated E sele and
a.. are then used in Equations (2)-(4) with a single rep-
resentative operating frequency f,, = 12 MHz, reflect-
ing the oscillator constraint used in the nextpnr timing
analysis. The only architectural parameter that changes
between the eight-bit and four-bit variants is the num-
ber of active logic-cells: N = 5105 for the eight-bit

design and N . = 3550 for the four-bit design. This yields:
p

core,8-bit

2]

core,4-bit

=9.23mW,
=~ 6.42mW.

The 1/0 dynamic power, computed from Equation 5 using

an effective load C_, deff ™ 10.6 pF, an effective switching

frequency f,, = 6.17 MHz, and 13 active pins at 3.3V, is
approximately:

P, ~4.63mW

for both word-lengths, since the external interface and
pin count are identical.

Substituting these values into Equations (1)-(6) gives:

Pynsne =13.86 MW,
Pynsne = 16.27 MW,

e
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Table 4: Classification metrics of the fuzzy inference system for different membership-function quantizations,
evaluated on the held-out test set (floating-point and 16-/8-/4-bit integer implementations).

E;l::)_(r%eembershlp Recall Damaged | Recall Scoring | Recall Normal | Macro Recall | Macro Precision | Macro F1-score
Floating-point 64-bit | 97 89 63 82.96 86.40 83.06
Integer 16-bit 97 88 64 82.82 85.98 82.64
Integer 8-bit 97 88 64 82.82 85.98 82.64
Integer 4-bit 96 89 64 83.02 86.29 82.86

for the eight-bit architecture, and:

Py ane =11.05mW,
Pyani = 12.46 MW,

for the four-bit architecture. With one fuzzy decision
per 1 s vibration window, the corresponding average
energies per decision (Equation 7) are approximately
15.27 mJ and 12.46 mJ, respectively. In relative terms,
moving from eight-bit to four-bit quantization reduces
the total power and energy per decision by about 19%,
in line with the 30% reduction in logic-cell count and the
lower toggle rate predicted by the analytical model.

Classification Performance

Table 4 summarizes the classification performance of
the FIS for different membership-function quantiza-
tions, based on the same rule base and dataset. The
64-bit floating-point model achieves a damaged-gear
recall of 97%, with macro recall, precision, and F1-score
of 82.96%, 86.40%, and 83.06%, respectively. Moving
to 16-bit and 8-bit integer implementations leaves the
metrics essentially unchanged, with identical recalls
(97/88/64% for damaged/scoring/normal) and very small
variations in macro precision and F1-score. The most
aggressive four-bit configuration yields a slight reduc-
tion in damaged recall to 96%, while improving the scor-
ing recall to 89% and maintaining normal recall at 64%;
macro recall and precision remain around 83% and 86%,
respectively. These results indicate that the proposed
integer FIS is highly robust to quantization, and that the
four-bit architecture preserves near-baseline fault-de-
tection performance in spite of its substantially lower
area and power.

DISCUSSION

The proposed architecture integrates digital acceler-
ometer interfacing, windowed time-domain feature
extraction, and a three-stage FIS into a single, time-
multiplexed fixed-point data path on a low-end program-
mable device. Functional simulations of the SPI-based

s [

acquisition, feature-accumulation logic, and fuzzy pipe-
line confirm that one consistent triplet of features is
produced every second and that fuzzification, rule eval-
uation, and defuzzification complete well within the
window period for both eight-bit and four-bit configura-
tions. The internal waveforms for membership degrees,
rule activations, and defuzzified outputs remain qualita-
tively similar across quantization levels, and the result-
ing class labels are consistent on the tested vibration
windows.

The quantitative PPA-accuracy trade-off is summarized
by the resource, power, and classification metrics.
Reducing the word-length from eight bits to four bits
lowers the logic-cell usage from 5105 (66%) to 3550 (46%)
of the iCE40 HX8K fabric, a reduction of roughly 30%,
while leaving 1/0 and clocking resources unchanged. At
the same time, the estimated total power decreases
from 15.27 mW to 12.46 mW, corresponding to about a
reduction of 19% in energy per decision at a fixed rate
of one decision per second. In terms of diagnostic per-
formance, all integer implementations closely follow
the 64-bit floating-point reference. The 16-bit and 8-bit
models reproduce the damaged-gear recall of 97% with
nearly identical macro recall, precision, and F1-score,
and the four-bit configuration reduces damaged recall
only slightly (to 96%) while maintaining normal recall at
64% and slightly improving scoring recall. These results
indicate that aggressive quantization and extensive
time-multiplexing can yield significant savings in area
and power with only marginal impact on fault-detection
performance.

Although the experiments were conducted on a single
gearbox operated at 1250 rpm and nominal load, the
proposed model and architecture are not inherently
tied to this operating point. The three selected time-
domain features (z_peak_to_peak, z-Willison amplitude,
and y-Willison amplitude) remain meaningful for other
speeds and loads as long as the sampling rate captures
several shaft revolutions per analysis window. In prac-
tice, adapting the system to different regimes would
involve reconfiguring the sampling and window dividers

Journal of VLSI circuits and systems, ISSN 2582-1458



Ahmad Sabiq et al.
Energy-Efficient VLSI Architecture for Time-Multiplexed Vibration Feature Extraction and Fuzzy Inference

(e.g., to change the number of samples per revolu-
tion), re-scaling the fuzzy membership breakpoints, and
regenerating the rule base from data collected at the
new operating conditions. These modifications affect
only the parameter values, not the micro-architecture:
the same time-multiplexed data path, resource foot-
print, and energy per decision are preserved, while the
achievable diagnostic accuracy becomes a function of
how well the fuzzy model is reidentified for each speed/
load scenario.

Compared with representative VLSI and FPGA implemen-
tations for fuzzy inference and condition monitoring,
the proposed design differs in that it integrates sensor
interfacing, time-domain feature extraction, and the
FIS pipeline on a single low-power fabric, and reports
energy-per-decision under realistic operating conditions.
Many existing works focus solely on the inference core
and assume precomputed features or target mid-range
devices and higher clock frequencies with power in the
tens to hundreds of milliwatts and without a consistent
per-decision metric. In contrast, the present four-bit
implementation delivers complete end-to-end process-
ing within approximately 12-15 mW on a very small
device, with a documented trade-off between quanti-
zation level, recall, and resource usage. In spite of het-
erogeneous reporting conventions in the literature, the
results here indicate that a carefully time-multiplexed
and quantized architecture can provide competitive
fault-detection accuracy while significantly reducing
area and energy compared with more conventional, par-
allel, or floating-point designs.

There are, however, several limitations to the present
study. First, all power and energy figures are derived
from vendor power models and simulated switching
activity rather than direct board-level measurements;
so, the absolute numbers should be interpreted with
caution. Second, the vibration dataset corresponds to a
single gearbox and a single operating point (1250 rpm,
nominal load). While the hardware pipeline itself is
agnostic to speed and torque, the current membership
functions and rule base are tuned only for this regime;
a systematic sensitivity study across multiple speeds,
load profiles, and fault severities is left as future work
before deployment in heterogeneous conveyor lines.
Third, the prototype targets a specific low-end pro-
grammable device; while the architectural principles of
time-multiplexing and short word-lengths are directly
transferable to ASIC implementations, a full ASIC design
and silicon measurements are beyond the scope of this
paper.
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CONCLUSION

This paper has presented a compact VLSI architecture
that integrates digital accelerometer interfacing, 1 s
windowed vibration feature extraction, and a three-
stage FIS for conveyor gearbox condition monitoring.
By selecting three highly correlated integer features
and mapping the entire pipeline to a time-multiplexed
fixed-point data path, the design fits comfortably within
a low-end programmable device while preserving real-
time operation. The eight-bit implementation already
achieves microsecond-scale fuzzy inference latency and
high recall for damaged gears, and the four-bit variant
further reduces logic-cell usage by about 30% and total
power by about 19% with only marginal degradation in
diagnostic performance.

Future work will extend the approach along several
directions. First, the feature set and FIS will be adapted
to variable conveyor speeds and additional sensing
modalities such as motor current, temperature, or
acoustic emissions. Second, optimization techniques
such as evolutionary tuning of membership functions
and hybrid fuzzy-neural models will be explored under
strict word-length and resource constraints. Finally, the
architecture will be migrated to more recent low-power
VLSI platforms, including newer programmable fabrics or
custom ASIC implementations with integrated nonvola-
tile memory and wireless communication, enabling scal-
able deployment of energy-aware condition-monitoring
nodes in industrial conveyor lines.
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