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Abstract

This paper presents an energy-efficient VLSI architecture for time-multiplexed vibration 
feature extraction and fuzzy inference targeted at conveyor gearbox condition monitoring. 
A triaxial ADXL345 accelerometer mounted on the gearbox housing is sampled at 50 Hz, and 
10 integer time-domain features are computed over 1 s windows. Pearson correlation anal-
ysis identifies three dominant features—z-axis peak-to-peak, z-axis Willison amplitude, and 
y-axis Willison amplitude—which form the inputs of a three-class fuzzy inference system 
(normal, scoring, and damaged). The proposed architecture integrates a digital sensor 
interface, a two-stage feature-extraction block, and a three-stage fuzzification–inference–
defuzzification pipeline using fixed-point arithmetic and extensive time-multiplexing. Two 
implementations, with eight-bit and four-bit word-lengths, are prototyped on a small low-
power programmable logic device. The four-bit variant reduces logic-cell usage from 5105 
(66%) to 3550 (46%) and lowers estimated total power from 15.42 mW to 12.46 mW, while 
maintaining high recall for damaged gears (97% to 96%) and sub-millisecond end-to-end 
latency per decision. Power figures are obtained from vendor models based on post-route 
netlists and simulated switching activity, and they are reported together with an effective 
energy-per-decision estimate to characterize the suitability of the proposed architecture 
for battery-powered edge deployments.
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Introduction

Condition monitoring of geared drives is crucial for pre-
dictive maintenance in conveyor-based material-handling 
systems, where undetected gear faults can cause down-
time, productivity loss, and safety risks. Vibration anal-
ysis is a well-established approach because tooth wear, 
scoring, and fractures leave clear signatures in gearbox 
vibrations. In many plants, however, continuous moni-
toring must run at the network edge under tight con-
straints on energy, silicon area, and cost.

Low-power VLSI and small programmable logic devices 
now enable integrated sensing, signal processing, and 
decision-making on a single edge node. Recent work 
has demonstrated low-power system-on-chip architec-
ture for computation-intensive video processing, where 
adaptive intra prediction, hierarchical motion esti-
mation, and clock gating are used to reduce dynamic 
power under real-time H.265 encoding constraints.[1] 
Other designs present fixed-point artificial neural net-
work architecture on FPGA that serve as flexible test-
beds for training and inference, optimized for resource 
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using three integer time-domain features—z-axis 
peak-to-peak, z-axis Willison amplitude, and y-axis 
Willison amplitude—selected via correlation analysis 
from a broader feature set.

2.	 Energy-efficient VLSI architecture. A time-
multiplexed fixed-point architecture that integrates 
digital sensor acquisition, feature extraction, and a 
three-stage FIS (fuzzification, rule evaluation, and 
defuzzification) in a single, low-power VLSI fabric.

3.	 Quantized implementations and PPA study. Eight-
bit and four-bit implementations on a small iCE40-
class device, with detailed evaluation of resource 
usage, timing, power, and energy per decision along-
side recall for each gear condition.

4.	 PPA–accuracy trade-off analysis. Evidence that the 
four-bit configuration cuts logic-cell usage by ≈30% 
and total power by ≈19% versus the eight-bit baseline 
while preserving high recall for faulty gears, showing 
that aggressive quantization and time-multiplexing 
are practical levers for edge condition-monitoring 
nodes.

Related Work

Hardware acceleration for condition monitoring and 
time-series analysis has been widely explored. Several 
works implement recurrent or convolutional neural 
networks on programmable logic for predictive main-
tenance, biomedical signal processing, and traffic or 
inertial data analysis tasks.[4–11,20] A recent design in this 
direction proposes a 16-bit fixed-point ANN architecture 
on FPGA that serves as a flexible testbed for training and 
inference, optimized for resource utilization and clock 
frequency and achieving significant speedup over prior 
implementations.[2] These accelerators demonstrate that 
real-time inference for time-series tasks is feasible on 
programmable VLSI fabrics, but they typically rely on 
relatively heavy models and do not integrate the full 
path from sensor to decision logic.

FISs have also been mapped to reconfigurable and 
custom hardware for real-time decision-making. 
Mamdani-type fuzzy triggers have been implemented 
for cosmic-ray event detection and open-circuit fault 
detection in cascaded H-bridge inverters,[13,14,21] while 
more elaborate designs realize interval type-2 TSK FIS 
engines for wildfire monitoring and multicore FIS accel-
erators for situation assessment on high-end devices.[15–

18] These works achieve microsecond-level latencies and 
large speedups over CPUs/GPUs, yet generally assume 
pre-computed features and large device capacities, and 
they seldom report energy per decision under strict 
power budgets.

utilization and clock frequency and achieving significant 
speedup over earlier implementations.[2] These exam-
ples illustrate how energy-aware architecture can be 
co-designed with algorithms to meet stringent perfor-
mance and power budgets.

Beyond these system-level studies, several works 
implement recurrent or convolutional neural networks on 
programmable logic for time-series analysis in predictive 
maintenance, biomedical signal processing, traffic-speed 
prediction, and inertial or audio tasks.[3–12] These designs 
show that milliwatt-class devices can support nontrivial 
time-series models, but they typically assume rich fea-
ture sets and focus on generic neural architecture rather 
than vibration-specific, tightly integrated pipelines.

Fuzzy inference systems (FISs) provide an attractive alter-
native for condition monitoring thanks to their interpret-
ability, rule-based structure, and natural compatibility 
with fixed-point arithmetic. Hardware FIS implemen-
tations have been reported for power-electronics fault 
detection, cosmic-ray event triggering, and environmen-
tal monitoring, using Mamdani or type-2 TSK formulations.
[13–18]. Although these designs achieve microsecond-level 
latencies and large speedups over CPUs/GPUs, they often 
target medium- to high-capacity devices and rarely inte-
grate the full chain from digital sensor interface through 
time-domain feature extraction to fuzzy decision-making, 
with energy per decision explicitly quantified.

For vibration-based gear monitoring on a tiny fabric, two 
main tensions dominate. Diagnostic performance bene-
fits from rich features and fine precision, whereas com-
pact hardware demands few integer features and short 
word-length. Fully parallel pipelines minimize latency but 
are expensive in logic and switching energy, while time-
multiplexing saves both at the cost of internal computation 
time. This paper addresses these tensions with an end-to-
end architecture for conveyor gearboxes—digital accelerom-
eter interfacing, 1 s windowed vibration feature extraction, 
and fuzzy inference for normal, scoring, and damaged con-
ditions—mapped to a fixed-point, time-multiplexed VLSI 
data path. Based on an experimental dataset, we select a 
small set of informative features, implement eight-bit and 
four-bit variants on a low-power programmable device, and 
quantify the impact of word-length reduction on power, 
area, and classification performance.

The main contributions are:

1.	 End-to-end edge-oriented model. A compact vibra-
tion-based monitoring model for conveyor gearboxes 
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local axes are oriented so that the z-axis captures the 
dominant radial vibration because of tooth meshing, 
while the y-axis provides an additional radial component 
sensitive to misalignment and scoring. Figure 1 illus-
trates the sensor placement and axis orientation used 
throughout the experiments.

The ADXL345 is configured to a ±2 g range and sam-
pled at 50 Hz via a digital serial interface. The conveyor 
operates at a shaft speed of 1250 rpm under three gear 
conditions: normal, scoring, and damaged. For each 
condition, 1200 s of vibration are acquired, yielding 60 
000 samples per axis and 1200 nonoverlapping 1 s win-
dows (50 samples) per class. These windows are split 
into modelling and testing subsets and form the basis for 
both fuzzy-model design and hardware validation.

The sampling rate and window length are chosen to bal-
ance diagnostic resolution and hardware complexity. At 
a shaft speed of 1250 rpm, the fundamental mechanical 
frequency is approximately 20.8 Hz. So, a sampling rate 
of 50 Hz captures several revolutions per second and 
suffices for time-domain statistics that are insensitive to 
high-frequency spectral details. A 1 s window therefore 
contains about 20–25 shaft rotations and 50 samples per 
axis, which is long enough to stabilize the time-domain 
features while keeping the number of samples, and thus 
the feature-extraction logic, minimal.

For every 1 s window, 10 integer time-domain fea-
tures are computed from the y- and z-axis signals: 
Willison amplitude, peak-to-peak value, zero-crossing 
rate, wavelength, and slope sign change (SSC) for each 
axis. Feature relevance is quantified using the Pearson 
correlation coefficient between each feature and 
the ordinal condition label (normal = 0, scoring =  1, 
damaged = 2). Table 1 summarizes the correlations and 

Low-power edge-oriented architecture on tiny pro-
grammable devices have been investigated for various 
sensor and AI workloads. Compact neural networks for 
capacitive-sensor classification and fall detection have 
been deployed on small FPGAs[4,5], and quantized GRU/
RNN models for livestock-behavior estimation achieve 
sub-mW to mW power consumption.[9,10,22] Dynamic time 
warping and LSTM accelerators on ultra-small devices 
demonstrate that computationally intensive sequence 
models can run under tight resource constraints, albeit 
with high logic and memory utilization and board power 
in the hundreds of milliwatts[3,7,8]. In the video domain, 
a low-power H.265 SoC implementation leverages adap-
tive intra prediction, hierarchical motion estimation, 
and clock gating to reduce dynamic power on a hetero-
geneous ARM–FPGA platform.[1,23] 

Taken together, these works demonstrate that both 
neural and fuzzy approaches can be efficiently accel-
erated in hardware, and that tiny FPGAs can support 
nontrivial time-series models. However, most prior 
designs either focus on rich neural architecture with 
substantial resource usage or on FIS cores that assume 
pre-computed inputs and target larger devices. They 
rarely integrate the complete chain from digital sensor 
interface through vibration feature extraction to fuzzy 
decision-making on a very small fabric, nor do they 
consistently report energy per decision. In contrast, 
the present work combines carefully selected integer 
time-domain features with a compact, time-multiplexed 
FIS on an iCE40 HX8K, emphasizing short word-lengths 
and resource reuse to achieve milliwatt-level operation 
suitable for battery-powered conveyor.

Vibration Dataset and Feature Processing Model

The experimental setup is a belt conveyor driven by 
a gearbox–motor unit instrumented with a triaxial 
ADXL345 accelerometer. The sensor is rigidly mounted 
on the gearbox housing near the output shaft, and its 

Fig. 1: Placement and orientation of the triaxial 
ADXL345 accelerometer on the conveyor gearbox 

housing.

Table 1: Pearson correlation between integer time-domain 
features (1 s windows at 50 Hz) and the ordinal gear-

condition label (normal = 0, scoring = 1, damaged = 2).

Feature Pearson correlation

z_willison_amp 0.902992

z_peak_to_peak 0.858746

y_willison_amp 0.781255

y-peak-to-peak 0.657617

z-zero-cross 0.353287

y-zero-cross 0.308598

z-wavelength 0.276626

y-ssc 0.255486

z-ssc 0.141203

y-wavelength 0.110063
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The architecture is explicitly time-multiplexed: a small 
set of arithmetic units is reused across streams, fea-
tures, and fuzzy rules. Within each 1 s window, the low-
speed 50 Hz and 1 Hz domains handle data acquisition 
and window control, while the high-speed core clock 
services the inner pipelines of fuzzification, inference, 
and defuzzification. This separation allows the design to 
meet real-time throughput requirements with modest 
logic resources and low switching activity.

In terms of hardware cost, the proposed data path 
is intentionally designed around extensive time-
multiplexing rather than full parallelism. A straight-
forward fully parallel implementation would allocate 
separate membership-evaluation units for all input–set 
combinations, distinct MIN/MAX trees for every rule, 
and dedicated area and moment calculators per output 
condition, leading to a much larger number of active 
comparators, adders, and registers. In contrast, the 
present architecture reuses a single membership core 
across all three inputs and three fuzzy sets, a shared 
MIN/MAX core across all rules, and a single area/moment 
core for all output conditions. This serialization slightly 
increases internal inference latency but keeps the num-
ber of toggling arithmetic units small, which is expected 
to reduce logic-cell utilization and dynamic power; this 
effect is quantified later in the experimental results 
section.

Sensor Interface and SPIcomponent

The SPIcomponent module (Figure 3) provides a reusable 
and technology-agnostic front-end for digital sensors. It 
is organized into three hierarchical layers:

shows that three features dominate: z_willison_amp 
(≈0.90), z_peak_to_peak (≈0.86), and y_willison_amp 
(≈0.78), while all others are substantially lower. To 
reduce hardware complexity and avoid weakly infor-
mative inputs, the FIS is therefore restricted to these 
three integer features, scaled to an eight-bit fixed-point 
range; the four-bit configuration is obtained by truncat-
ing the same scaled values.

For model development and evaluation, the 1200 win-
dows per condition are partitioned into disjoint model-
ling and testing subsets. In the experiments reported 
here, 70% of the windows (840 per class) are used to 
design the fuzzy membership functions and to tune the 
decision thresholds, while the remaining 30% (360 per 
class) form a held-out test set. 

Proposed Architecture

System-Level VLSI Architecture

Figure 2 shows the overall architecture, which imple-
ments a complete edge processing chain for conveyor 
gearbox monitoring. A clock-generation block produces 
a high-speed core clock (100 MHz) and two divided 
clocks at 50 Hz and 1 Hz. The digital sensor inter-
face block acquires triaxial acceleration data from the 
ADXL345 over a serial link at 50 Hz. A feature-process-
ing block computes the three selected time-domain fea-
tures over 1 s windows. These integer features are fed 
into a pipelined FIS comprising fuzzification, rule evalu-
ation, and defuzzification stages, which jointly produce 
a crisp output and a two-bit class label indicating the 
gear condition.

Fig. 2: Overall VLSI architecture integrating digital ADXL345 acquisition, 1 s vibration feature extraction, and 
the time-multiplexed fuzzy inference system on a low-power programmable device.
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architecture: processing_core and output_processing. 
Inputs y_data and z_data are sampled at clk_50Hz, 
while clk_1Hz defines the feature window (one second in 
the present design).

In Stage 1 – processing_core, several subblocks operate 
under a shared control:

•	A difference unit computes sample-to-sample differ-
ences for the y- and z-axes. The same subtractor hard-
ware is time-multiplexed for both axes.

•	A Willison Accumulator integrates the absolute differ-
ences that exceed a programmable threshold, yielding 
y_willison_acc and z_willison_acc. The comparator 
and accumulator registers are reused for both axes in 
different clock cycles.

•	A Min/Max finder tracks the minimum and maximum 
values of the z-axis within the current window (z_min, 
z_max) using a single comparator-update unit.

•	A Window Control block, driven by clk_1Hz, generates 
the periodic reset signals that delimit each feature 
window and synchronize all accumulators.

Stage 1 thus transforms a stream of raw samples into 
partial sums and extrema using a compact set of arith-
metic units, heavily shared across channels and features.

•	A control and sequencing layer (SPImaster) that con-
tains a main finite state machine (FSM) orchestrating 
all SPI transactions, including register configuration 
and periodic conversions based on the 50 Hz sampling 
clock.

•	A physical and timing layer (SPIinterface) that hosts 
the serializer/deserializer pair, the serial clock gener-
ator, and the data path for SDI/SDO. Parallel-to-serial 
and serial-to-parallel conversion are time-multiplexed 
through shared shift registers to reduce logic.

•	A chip-select layer that manages the slave-select sig-
nal and encapsulates slave-selection logic, allowing 
the same SPIcomponent to be extended to multiple 
devices if required.

Transmit (transmit) and completion (done) handshakes 
connect these layers: the main FSM triggers a transac-
tion, the physical layer executes the low-level bit trans-
fers, and on completion the received data are placed 
into an RxBuffer and flagged as valid. The x, y, and z 
axis samples are then forwarded to the feature pro-
cessing module without additional buffering, minimizing 
latency and on-chip storage.

Time-Multiplexed Vibration Feature Extraction

The data processing module in Figure 4 implements 
the three time-domain features using a two-stage 

Fig. 3: SPIcomponent structure: control/sequencing 
(SPImaster), physical/timing (SPIinterface), and chip-

select layer for ADXL345 access.
Fig. 4: Two-stage feature-extraction block: 

windowed Willison accumulation and min/max 
tracking in the processing core, followed by 

registered feature outputs.
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Fuzzification Engine
The fuzzification module (Figure 6) receives the three 
feature values together with clock and reset signals. At 
its core is a main sequencer, driven by a moderate-rate 
control clock and enabled once per second, which iter-
ates over all input–membership combinations. A small 
arithmetic unit evaluates trapezoidal membership func-
tions for one feature–set pair at a time.

The membership results are passed to a result multi-
plexer and intermediate register block, which assembles 
the full set of degrees (for example, z_low, z_medium, 
z_high, and analogous sets for the other features) and 
exposes them to the next stage. A completion signal is 
raised when all memberships have been computed; the 
FIS top-level then triggers the inference engine. This 
scheme reuses a single membership-computation unit 
for all fuzzy sets and inputs, substantially reducing area 
compared with a fully parallel implementation.

Inference Engine
The inference module (Figure 7) implements the rule 
evaluation using a pipelined architecture. A main 
sequencer generates the sequence of rule evaluations 
and controls the data flow through the module.

A multiplexer network selects the relevant membership 
degrees for each rule from the fuzzification outputs. 
These degrees are fed to a fuzzy operator core, which 
contains shared MIN and MAX units. For each rule, the 
core applies the MIN operator to compute the rule fir-
ing strength, and then uses MAX operations to aggregate 
contributions across rules for each output condition.

To reduce storage overhead, intermediate rule strengths 
are held in a small register bank and are reused via a 
feedback multiplexer: the same aggregation hardware 
iterates over the rules instead of maintaining a large 

In Stage 2 – output_processing, these partial results are 
latched and converted into final feature values exactly 
once per window, clocked by clk_1Hz. The Willison 
accumulators are scaled and truncated to form the inte-
ger features y_willison_amp and z_willison_amp. The 
peak-to-peak feature z_peak_to_peak is computed as 
the difference between z_max and z_min. Because this 
stage is active only at the end of each window, it can be 
clock-gated for the remaining cycles, further reducing 
dynamic power.

The combination of window-level control and arithmetic 
reuse ensures that feature extraction meets the 50 Hz 
sampling requirement while occupying a modest amount 
of logic and limiting unnecessary switching activity. In 
a nonmultiplexed feature extractor, the difference cal-
culator, threshold comparators, accumulators, and min/
max units would be replicated per axis and per feature, 
so many arithmetic blocks would toggle in parallel at 
50  Hz and at the core clock. In the proposed design, 
the same subtractor, comparator, and accumulator 
hardware is reused across the y and z channels under 
window-level control, so only a small subset of arith-
metic units is active in each cycle, which helps contain 
both logic-cell count and core dynamic power.

Pipelined FIS

The FIS is organized as a three-stage pipeline, as 
depicted in Figure 5. The FIS receives the three fea-
tures and associated control signals from the feature-
extraction block. A global sequencer coordinates the 
stages using simple handshake signals: each stage asserts 
a completion flag, and the subsequent stage is enabled 
by a corresponding enable signal. This decoupled struc-
ture allows each stage to run at an appropriate clock 
rate and internal latency while maintaining an effective 
throughput of one decision per feature window.

The pipeline consists of:

1.	 Fuzzification stage, which converts the crisp fea-
tures into membership degrees for three fuzzy sets 
(low, medium, and high) per input.

2.	 Inference stage, which evaluates the rule base using 
MIN–MAX operators to obtain fuzzy support for each 
output condition (normal, scoring, and damaged).

3.	 Defuzzification stage, which computes a scalar out-
put via a centroid-like operation and maps it to the 
final class label.

Each stage is internally time-multiplexed, so that only a 
small number of membership calculators and MIN/MAX 
operators are required.

Fig. 5: Three-stage fuzzy inference pipeline 
(fuzzification, rule evaluation, and defuzzification) 

with handshake signals between stages.
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instead feeds the required membership degrees to a sin-
gle shared MIN/MAX operator and a small bank of reuse 
registers; aggregated supports for each output class 
are accumulated iteratively via the feedback MUX. This 
time-multiplexed rule processing reduces the number 
of MIN/MAX units to a small constant at the cost of a 
modest increase in inference latency. Since inference 
is performed only once per feature window and within 
a budget of hundreds of microseconds, this trade-off is 
acceptable and beneficial for both resource usage and 
dynamic power.

array of parallel accumulators. When all rules have been 
processed, the aggregated values for the three output 
conditions are written into a final output register and 
passed to the defuzzification stage.

In this design, rule evaluation is explicitly time-
multiplexed. A naive fully parallel implementation 
would instantiate a dedicated MIN/MAX tree—and possi-
bly separate antecedent logic—for every rule and output 
condition, so that many comparators and adders switch 
on every core clock edge. Here, the global sequencer 

Fig. 6: Fuzzification engine with input and parameter multiplexers, a single membership-calculation core, and 
staged latching of membership degrees.

Fig. 7: Inference engine: antecedent MUX network, shared MIN/MAX core, reuse registers, and per-class 
accumulators.



Ahmad Sabiq et al. 
Energy-Efficient VLSI Architecture for Time-Multiplexed Vibration Feature Extraction and Fuzzy Inference

91Journal of VLSI circuits and systems, ISSN 2582-1458

The defuzzification pipeline is therefore highly serial-
ized: a single arithmetic core is reused for three output 
conditions and multiple polygon segments, which sub-
stantially decreases logic utilization. Because it is trig-
gered only once per window, the impact on throughput 
is negligible relative to the 1 s feature window.

Control, Clocks, and Throughput

All blocks described above are coordinated through 
simple handshake signals and a small number of clock 
domains. The design uses the 12 MHz on-board oscillator 
as the primary reference clock. An on-chip PLL multi-
plies this reference to a 100 MHz core clock that feeds 
the time-multiplexed data path while two low-frequency 
clocks at 50 Hz (sensor sampling) and 1 Hz (feature win-
dow update) are generated by integer clock dividers 
from the PLL output.

The high-frequency CLK (100 MHz) is used only in arith-
metic cores where multi-cycle computations are ben-
eficial (membership evaluation, MIN/MAX operators, 
and area calculation). The slower CLKS clock drives the 
sequencers, MUX networks, and registers that orches-
trate time-multiplexing, while clk_1Hz defines the out-
ermost period of feature and inference updates.

The top-level control ensures the following sequence 
within each 1 s window: (1) continuous sampling of 
accelerometer data at 50 Hz and accumulation of fea-
ture statistics; (2) once the window closes, final feature 
values are latched; and (3) fuzzification, inference, and 
defuzzification are executed in sequence, complet-
ing well before the next window boundary. Gate-level 
simulations indicate that the total latency from feature 
latching to class label is in the order of a few microsec-
onds at 100 MHz, which is orders of magnitude smaller 
than 1 s and guarantees real-time operation with suffi-
cient timing margin. The multi-clock scheme, combined 
with time-multiplexed functional units and window-level 
gating, directly contributes to energy efficiency: only 
the necessary subcircuits toggle at high frequency for 
short bursts, while the rest of the architecture remains 
idle or runs at very low frequency.

Fuzzy Membership Functions and Rule Base

The FIS uses three input variables—z_peak_to_peak, 
z_willison_amp, and y_willison_amp—and one out-
put variable representing the gear condition. All vari-
ables are defined on the eight-bit fixed-point domains 
obtained from the scaled feature ranges. Each input is 
partitioned into three trapezoidal sets (low, medium, 

Defuzzification Engine
The defuzzification module (Figure 8) receives the 
aggregated fuzzy supports for the three output con-
ditions, along with a second LUT of triangular output 
membership parameters. Its pipeline comprises four 
logical stages under a unified Sequencer and Control 
block:

•	An input multiplexer and parameter LUT select one 
output condition at a time and fetch the correspond-
ing membership parameters.

•	An area calculation core, implemented as a multi-
cycle arithmetic block, computes in fixed-point the 
effective membership and the contribution to the 
numerator for a center-of-area–like aggregation. This 
core is reused sequentially for each condition.

•	An intermediate result register stores the partial 
membership sums and numerators for each condi-
tion. Once all three conditions have been processed, 
these registers contain the sums required for the final 
defuzzification.

•	A final aggregation and division stage combines the 
stored values to compute the crisp output defuzzi_
output[7:0] and its associated two-bit class label. 
The division is implemented using an iterative integer 
algorithm, amortized over the full window period to 
minimize area.

Fig. 8: Defuzzification engine with parameter/load 
MUX, area and moment core, per-class registers, 

and final aggregation/division to obtain the 
crisp output.
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VLSI Prototype and Implementation Details

The proposed architecture is described in synthesizable 
Verilog and prototyped on a Lattice iCE40 HX8K device 
mounted on a small evaluation board. The design instan-
tiates the SPI-based ADXL345 interface, the time-domain 
feature-extraction block, and the three-stage fuzzy 
inference pipeline, all mapped to LUT–carry logic with-
out using embedded RAMs or DSP blocks. An on-board 
12 MHz oscillator provides the primary clock input; an 
on-chip PLL multiplies this clock to generate the internal 
high-speed core clock used by the fuzzy pipeline, while 
the 50 Hz and 1 Hz clocks for sampling and window con-
trol are derived by integer clock dividers from the same 
source.

Logic synthesis is performed with Yosys, and placement 
and routing with nextpnr-ice40 under a 100 MHz timing 
constraint on the core clock. Post-route netlists are used 
for static timing analysis and for power estimation with 
the vendor’s iCE40 power models. Switching activity is 
obtained from gate-level simulations driven by represen-
tative vibration traces at 50 Hz. The resource utilization 
and power figures reported in the following subsections 
therefore refer to a fully routed design on the HX8K 
device and correspond to the same operating conditions 
used in the functional simulations.

Power Evaluation Methodology

The power analysis follows the standard CMOS dynam-
ic-power model in reference[19] and distinguishes 
between dynamic power in the FPGA core logic, 
dynamic power in the I/O pins, and static power. The 
total dynamic power is defined as:

= +dyn core IOP P P � (1)

Core dynamic power is modelled as the product of the 
average toggle energy and the aggregate logic-event 
rate:

= ´core toggle Events/P E s � (2)

with the per–transition energy:

= × 2
toggle eff core

1
2

E C V � (3)

Here Ceff is an effective capacitance that represents the 
combined load of LUTs, flip-flops, routing, and the clock 
tree. The aggregate logic-event rate is approximated as:

( )a= å LC,Events/ k k k
k

s N f � (4)

and high), while the output “condition” employs three 
triangular sets (normal, scoring, and damaged). The 
integer breakpoints (a, b, c, and d) for all input and out-
put membership functions are chosen from the empir-
ical feature distributions and snapped to the nearest 
integers

The rule base follows a Mamdani formulation, but the 
rules are derived from the labelled dataset rather 
than specified purely by expert knowledge. For every 
1 s window, the three features are fuzzified, and the 
resulting combination of input labels (low, medium, and 
high for each feature) is paired with the corresponding 
ground-truth gear condition (normal, scoring, and dam-
aged). By counting how often each fuzzy-label combi-
nation co-occurs with each condition over the entire 
dataset, dominant patterns are identified: for every dis-
tinct fuzzy input pattern, the condition with the highest 
occurrence frequency is selected as the rule conse-
quent. These initial data-driven rules are then simplified 
by merging patterns that differ only in one feature but 
share the same dominant condition, replacing that fea-
ture by a wildcard to reduce redundancy while preserv-
ing interpretability.

The final rule base contains 14 Mamdani IF–THEN rules 
that capture the dominant relationships between the 
three fuzzified features and the gear conditions. The 
same membership parameters and rule base are used 
for the floating-point, 16-bit, 8-bit, and 4-bit models; 
lower word-lengths are obtained by truncating the 
underlying integer representation, without retraining or 
retuning the rules. This design choice makes the impact 
of quantization on both classification accuracy and VLSI 
cost directly measurable in the experimental results.

Table 2: Integer parameters of input and output fuzzy 
membership functions (eight-bit configuration).

Variable Set a b c d

z_willison_amp LOW 0 0 5 14

z_willison_amp MEDIUM 4 12 15 26

z_willison_amp HIGH 9 21 33 33

y_willison_amp LOW 0 0 7 15

y_willison_amp MEDIUM 2 9 12 20

y_willison_amp HIGH 6 15 27 27

z_peak_to_peak LOW 9 9 17 27

z_peak_to_peak MEDIUM 15 24 29 47

z_peak_to_peak HIGH 24 49 118 118

condition (output) NORMAL 0 35 98 –

condition (output) SCORING 22 83 162 –

condition (output) DAMAGED 55 138 255 –
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drives the START signal that triggers a burst transfer 
on the SPI bus. During each burst, the generated serial 
clock (SCLK) toggles while SS is asserted to be low, and 
the sensor data words are shifted out on SDO and cap-
tured on SDI. At the end of each transaction, the parallel 
registers x_axis[9:0], y_axis[9:0], and z_axis[9:0] hold 
the signed accelerometer samples for the three axes. 
The traces confirm correct synchronization between SS, 
SCLK, and the axis registers and demonstrate that the 
SPIcomponent delivers fresh sensor samples at every 
20 ms period as required.

Figure 10 illustrates the subsequent feature extraction 
for the y- and z-axis data. Over a 1 s interval, the z-axis 
extrema (z_min, z_max) are tracked continuously, 
and the peak-to-peak value z_peak_to_peak[7:0] is 
updated only at the rising edge of clk_1Hz. In parallel, 
the Willison accumulators y_Willison_acc[15:0] and 
z_Willison_acc[15:0] integrate the thresholded abso-
lute differences between consecutive samples. At the 
end of the window, these accumulators are converted 
into the final integer features y_Willison_amp[5:0] 
and z_Willison_amp[5:0]. The waveform shows that 
intermediate accumulator values evolve monotoni-
cally within the window and are reset cleanly at each 
clk_1Hz  tick, confirming that the two-stage data pro-
cessing block generates one consistent triplet of fea-
tures per second.

Figures 11 and 12 present the internal behavior of the 
fuzzy inference pipeline for the same input features 
under eight-bit and four-bit quantization, respectively. In 
both cases, the fuzzification stage successively produces 
the membership degrees (z_low, z_medium, z_high, 
zw_low, …, yw_high), which then feed the rule evalu-
ation logic to produce aggregated supports for normal_
condition, scoring_condition, and damaged_condition. 
The defuzzification stage accumulates the partial areas 
(mu_normal, mu_scoring, and mu_damaged), and 
numerators (numer_normal, numer_scoring, and numer_
damaged) compute the denominator, and finally outputs 
the crisp value defuzzi_output[7:0] together with the 
class label final_condition[1:0].

As expected, the four-bit configuration exhibits more 
coarsely quantized membership degrees and area terms, 
but the evolution of the internal signals remains qual-
itatively similar and the final class label matches the 
eight-bit result for all tested windows. These waveforms 
validate that the time-multiplexed pipeline and multi-
stage handshakes operate correctly across the different 
word-lengths.

where NLC,k is the number of active logic-cells in clock 
domain k, ak is the average activity factor (probability 
of a transition per clock cycle) in that domain, and fk is 
the corresponding clock frequency.

In practice, NLC,k and fk are obtained from the post-
place-and-route reports (Yosys/nextpnr and iCEcube2), 
while ak fk is taken directly from the Seq LCs Switching 
Frequency and Comb LCs Switching Frequency columns 
of the lattice power estimator. Each entry in these 
columns already represents the effective switching 
frequency per logic-cell for that domain, so the total 
logic-event rate is computed simply as the sum of NLC,k 
times the corresponding switching frequency. The effec-
tive capacitance Ceff and toggle energy Etoggle are cali-
brated once by matching Equations (3)–(5) to the core 
dynamic power reported by the vendor tool for the 
same post-route netlist and clock configuration; the cal-
ibrated Etoggle is then reused when comparing the eight-
bit and four-bit architecture.

Dynamic I/O power is modelled as the sum of the capac-
itive switching power over all toggling pins:

=

æ ö= ç ÷
è ø

å 2
IO IO, IO, SW,

1

1
2

N

i i i
i

P C V f � (5)

where CIO,i is the effective load capacitance of pin i 
(including package and board load), VIO,i is the corre-
sponding I/O-bank voltage, and fSW,i is the effective 
switching frequency derived from the interface specifi-
cation (e.g., SPI clock) and confirmed by the power esti-
mator. The total device power is then:

= +total static dynP P P � (6)

Static power Pstatic is taken from the iCE40 HX8K data-
sheet for the nominal core voltage Vcore = 1.2 V.

The energy per decision is finally obtained by multiply-
ing Ptotal by the decision period. Since the fuzzy pipeline 
produces one condition estimate per 1 s vibration win-
dow, the average energy per decision is:

= × =decision total decision decision, 1E P T T s � (7)

Experimental Results and Discussion

Functional Validation from Simulation

Figure 9 shows the simulation waveform of the SPI-based 
sensor interface. The 50 Hz sampling clock (clk_50Hz) 
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3550 (≈46%), corresponding to a ≈30% reduction in LUT 
usage and freeing more than 1500 logic-cells for the 
integration of communication stacks or higher-level con-
trol logic. The I/O and clocking resources are essentially 
unchanged between the two variants, as they are dic-
tated by the external sensor interface and global clock-
ing scheme.

Both implementations meet the 100 MHz timing con-
straint on the core clock, with additional slack in the 
four-bit case because of shorter carry chains and nar-
rower data paths. Since the system issues only one fuzzy 

Resource Utilization on iCE40 HX8K

Table 3 summarizes the post-place-and-route resource 
utilization of the complete design on the iCE40 HX8K 
device for the eight-bit and four-bit configurations.

The architecture intentionally avoids dedicated DSP 
blocks and block RAMs; all arithmetic is realized using 
LUTs and carry chains, which simplifies portability to 
ASIC flows. The eight-bit configuration occupies 5105 
logic-cells (≈66% of the device), leaving limited head-
room for additional on-chip functionality. Reducing the 
word-length to four bits lowers the logic-cell count to 

Fig. 10: Simulation of 1 s time-domain feature extraction for the y- and z-axis signals.

Fig. 11: Internal fuzzy inference signals for the eight-bit quantized implementation.

Fig. 9: Gate-level simulation of SPI-based ADXL345 axis-data acquisition at 50 Hz.
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Etoggle = 2.4 × 10–12J,

which corresponds to an effective switched capacitance 
of about Ceff ≈ 3.35  pF per event at Vcore = 1.2  V. The 
same toggle energy, together with the total logic-cell 
count and the aggregate ( )aå LC,k k k

k

N f , implies an aver-

age activity factor of roughly αeff ≈ 6.25% for the core 
logic.

For the comparative analysis, this calibrated Etoggle and 
αeff are then used in Equations (2)–(4) with a single rep-
resentative operating frequency fclk = 12  MHz, reflect-
ing the oscillator constraint used in the nextpnr timing 
analysis. The only architectural parameter that changes 
between the eight-bit and four-bit variants is the num-
ber of active logic-cells: NLC = 5105 for the eight-bit 
design and NLC = 3550 for the four-bit design. This yields:

»
»

core,8-bit

core,4-bit

9.23mW,

6.42 mW.

P

P

The I/O dynamic power, computed from Equation 5 using 
an effective load Cload,eff ≈ 10.6  pF, an effective switching 
frequency fSW ≈ 6.17  MHz, and 13 active pins at 3.3 V, is 
approximately:

»IO 4.63mWP

for both word-lengths, since the external interface and 
pin count are identical.

Substituting these values into Equations (1)–(6) gives:

»

»
dyn,8-bit

dyn,8-bit

13.86 mW,

16.27 mW,

P

P

decision per 1 s window, this additional timing margin 
does not translate into higher throughput but provides 
robustness against voltage and temperature variations.

Power and Energy Estimation

The calibrated model above is instantiated using the 
vendor power data for the eight-bit configuration. In 
the lattice power estimator, the clock-domain tab for 
this design contains two active domains: the base clock 
main|clk_in at approximately 7.89 MHz and the PLL core 
clock PLLOUTCORE at approximately 49.34  MHz. For 
each domain, the tool reports the number of sequential 
and combinational logic-cells and their Seq/Comb LCs 
Switching Frequency in MHz; these switching frequen-
cies already encode the products ak fk in (Equation 4). 
Summing NLC,k times the corresponding switching fre-
quency over all domains yields a total toggle rate of 
about 1.16×1010 events/s for the eight-bit design.

Using the vendor-reported core dynamic power for this 
configuration, the toggle energy in (Equation 3) is cali-
brated to approximately:

Table 3: Post-place-and-route hardware 
resource utilization of the complete sensor–

feature–FIS pipeline on the iCE40 HX8K device 
for eight-bit and four-bit configurations.

Resource Available Eight-bit 
usage

Four-bit usage

Logic-Cell 7680 5105 (66%) 3550 (46%)

SB_IO 256 13 (5%) 13 (5%)

SB_GB 8 8 (100%) 8 (100%)

DSP – N/A N/A

PLL 2 1 (50%) 1 (50%)

Fig. 12: Internal fuzzy inference signals for the four-bit quantized implementation.
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acquisition, feature-accumulation logic, and fuzzy pipe-
line confirm that one consistent triplet of features is 
produced every second and that fuzzification, rule eval-
uation, and defuzzification complete well within the 
window period for both eight-bit and four-bit configura-
tions. The internal waveforms for membership degrees, 
rule activations, and defuzzified outputs remain qualita-
tively similar across quantization levels, and the result-
ing class labels are consistent on the tested vibration 
windows.

The quantitative PPA–accuracy trade-off is summarized 
by the resource, power, and classification metrics. 
Reducing the word-length from eight bits to four bits 
lowers the logic-cell usage from 5105 (66%) to 3550 (46%) 
of the iCE40 HX8K fabric, a reduction of roughly 30%, 
while leaving I/O and clocking resources unchanged. At 
the same time, the estimated total power decreases 
from 15.27 mW to 12.46 mW, corresponding to about a 
reduction of 19% in energy per decision at a fixed rate 
of one decision per second. In terms of diagnostic per-
formance, all integer implementations closely follow 
the 64-bit floating-point reference. The 16-bit and 8-bit 
models reproduce the damaged-gear recall of 97% with 
nearly identical macro recall, precision, and F1-score, 
and the four-bit configuration reduces damaged recall 
only slightly (to 96%) while maintaining normal recall at 
64% and slightly improving scoring recall. These results 
indicate that aggressive quantization and extensive 
time-multiplexing can yield significant savings in area 
and power with only marginal impact on fault-detection 
performance.

Although the experiments were conducted on a single 
gearbox operated at 1250 rpm and nominal load, the 
proposed model and architecture are not inherently 
tied to this operating point. The three selected time-
domain features (z_peak_to_peak, z-Willison amplitude, 
and y-Willison amplitude) remain meaningful for other 
speeds and loads as long as the sampling rate captures 
several shaft revolutions per analysis window. In prac-
tice, adapting the system to different regimes would 
involve reconfiguring the sampling and window dividers 

for the eight-bit architecture, and:

»

»
dyn,4-bit

dyn,4-bit

11.05mW,

12.46 mW,

P

P

for the four-bit architecture. With one fuzzy decision 
per 1 s vibration window, the corresponding average 
energies per decision (Equation 7) are approximately 
15.27 mJ and 12.46 mJ, respectively. In relative terms, 
moving from eight-bit to four-bit quantization reduces 
the total power and energy per decision by about 19%, 
in line with the 30% reduction in logic-cell count and the 
lower toggle rate predicted by the analytical model.

Classification Performance

Table 4 summarizes the classification performance of 
the FIS for different membership-function quantiza-
tions, based on the same rule base and dataset. The 
64-bit floating-point model achieves a damaged-gear 
recall of 97%, with macro recall, precision, and F1-score 
of 82.96%, 86.40%, and 83.06%, respectively. Moving 
to 16-bit and 8-bit integer implementations leaves the 
metrics essentially unchanged, with identical recalls 
(97/88/64% for damaged/scoring/normal) and very small 
variations in macro precision and F1-score. The most 
aggressive four-bit configuration yields a slight reduc-
tion in damaged recall to 96%, while improving the scor-
ing recall to 89% and maintaining normal recall at 64%; 
macro recall and precision remain around 83% and 86%, 
respectively. These results indicate that the proposed 
integer FIS is highly robust to quantization, and that the 
four-bit architecture preserves near-baseline fault-de-
tection performance in spite of its substantially lower 
area and power.

Discussion

The proposed architecture integrates digital acceler-
ometer interfacing, windowed time-domain feature 
extraction, and a three-stage FIS into a single, time-
multiplexed fixed-point data path on a low-end program-
mable device. Functional simulations of the SPI-based 

Table 4: Classification metrics of the fuzzy inference system for different membership-function quantizations, 
evaluated on the held-out test set (floating-point and 16-/8-/4-bit integer implementations).

Fuzzy Membership 
Data Type Recall Damaged Recall Scoring Recall Normal Macro Recall Macro Precision Macro F1-score

Floating-point 64-bit 97 89 63 82.96 86.40 83.06

Integer 16-bit 97 88 64 82.82 85.98 82.64

Integer 8-bit 97 88 64 82.82 85.98 82.64

Integer 4-bit 96 89 64 83.02 86.29 82.86
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Conclusion

This paper has presented a compact VLSI architecture 
that integrates digital accelerometer interfacing, 1 s 
windowed vibration feature extraction, and a three-
stage FIS for conveyor gearbox condition monitoring. 
By selecting three highly correlated integer features 
and mapping the entire pipeline to a time-multiplexed 
fixed-point data path, the design fits comfortably within 
a low-end programmable device while preserving real-
time operation. The eight-bit implementation already 
achieves microsecond-scale fuzzy inference latency and 
high recall for damaged gears, and the four-bit variant 
further reduces logic-cell usage by about 30% and total 
power by about 19% with only marginal degradation in 
diagnostic performance.

Future work will extend the approach along several 
directions. First, the feature set and FIS will be adapted 
to variable conveyor speeds and additional sensing 
modalities such as motor current, temperature, or 
acoustic emissions. Second, optimization techniques 
such as evolutionary tuning of membership functions 
and hybrid fuzzy–neural models will be explored under 
strict word-length and resource constraints. Finally, the 
architecture will be migrated to more recent low-power 
VLSI platforms, including newer programmable fabrics or 
custom ASIC implementations with integrated nonvola-
tile memory and wireless communication, enabling scal-
able deployment of energy-aware condition-monitoring 
nodes in industrial conveyor lines.
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