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ABSTRACT

Increased development of high-performance computing (HPC) has increased the
pressure on new paradigms in VLSI circuit design, as device scaling is approaching
scaling limits where quantum effects become important. Conventional electronic
design automation (EDA) processes have difficulties in dealing with nonlinear inter-
actions that occur when quantum tunnelling, leakage currents, and probabilistic
switching are also present in the deeply scaled technology. To overcome them,
this paper suggests an all-encompassing Al/ML-based EDA architecture, which
incorporates quantum-aware modelling, predictive synthesis, and adaptive opti-
mization of future HPC-oriented next-generation VLSI systems. The framework has
incorporated machine learning (ML)-based parametric estimation, reinforcement
learning (RL) on layout exploration, and physics-guided neural models: nonclassical
effects in nanoscale transistors. Furthermore, the system uses generative learning
algorithms to create multiobjective design trade-offs in terms of timing, power,
area, and quantum reliability. The hybrid digital-quantum design flow is presented,
allowing to easily interchange the classical EDA operations and quantum-inspired
device tests. Nanometer-scale benchmark circuit confirmation of the efficiency of
synthesis, accuracy of leakage prediction, and rate of convergence of optimization
are shown to be much enhanced with respect to more traditional EDA pipelines.
The given methodology puts the emphasis on the role of intelligent automation as
the means of guiding the VLSI research toward the point of quantum-awareness as
the key to ensuring reliability, scalability, and energy efficiency in an HPC system.
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INTRODUCTION

Rapid development of high-performance computing
(HPC) has compounded the need to develop high-quality
VLSI circuits with the ability to maintain a high through-
put, low latency, and ultra-low power usage. Standard
semiconductor design techniques are becoming limited
by inherent limitations of devices at smaller technology
nodes as quantum effects like tunnelling leakages, prob-
abilistic switching, and band-band interactions become
increasingly visible. These novel behaviors reduce reli-
ability and predictability of classical EDA flows that were
traditionally formulated based on the deterministic
device assumptions. As a result, current design circuits
are demanding more advanced design models that have
the capability of modelling the complexities of deeply
scaled technologies.[" 1"

At the same time, the development of Al and machine
learning (ML) has brought about a groundbreaking poten-
tial in the field of electronics. Workflows with ML have
already shown themselves to be able to improve the
accuracy of parametric prediction, the automatization
of the design-space exploration, and the production of
efficient circuit patterns. The recent research demon-
strates the efficiency of Al-driven solutions to embedded
systems,['l anomaly detection in the loT environment,['2
smart electronics evolution,[™ and smart integration of
devices.! In spite of the fact that HPC architectures are
progressing in a similar fashion, the mutually supportive
nature of Al algorithms and scalable hardware platforms
is emphasized.l'" With increasing computational abil-
ity challenged by HPC, the VLSI implementation has to
embed intelligent automation, which will allow timely
synthesis, better optimization, and resistance to non-
classical physical effects.

Models of quantum-influenced devices introduce fur-
ther design challenges because of statistical uncer-
tainty and nonlinear interaction which are not entirely
addressed by classical EDA models. Researchers have
highlighted that it is necessary to reconsider the con-
cept of workflow automation by implementing ML that
will allow predictive modelling of quantum-scale effects
and improved design quality.['"™29 Furthermore, the
convergence of quantum-conscious device physics and
Al-assisted design automation develops a new avenue of
filling the gap between the existing digital EDA and the
upcoming quantum-aided circuit design.

The current paper proposes an Al/ML-based EDA system
that is designed to support quantum-aware VLSI circuit
synthesis of HPC settings. The scheme proposed is a

« I

synthesis of physics-aware modeling, smart optimization
and machine-learned synthesis, which is a crucial step
to automated next-generation chip design.

RELATED WORK

The crossroads between ML and electronic design auto-
mation (EDA) has become quite popular because scaling
issues require more creative circuit synthesis methods.
Past research has addressed the application of learn-
ing heuristics to early modelling, time analysis, and
layout optimization, and shows a substantial improve-
ment over traditional rule-based approaches.!"MZE]
Optimization studies in embedded systems have noted
the increasing use of ML to optimize performance at
the system level and decrease computation cost in
edge computers.['! This development is an indication
of a wider trend where it is becoming more popular to
apply intelligence-augmented automation in electronics
design pipelines.

ML structures enhance anomaly detection, communi-
cation stability, and energy efficiency in the loT and
distributed sensor system domain,'” which are similar
requirements in VLSI settings. The wide range of appli-
cations of smart technology in various branches of engi-
neering also indicates the flexibility and adaptability
of ML techniques in detecting patterns, improving pro-
cesses, making systems more resilient, etc.[®! Hardware
and software co-designing hardware and algorithms
using Al computational architectures, especially the
ones dealing with large-scale training and inference, are
important to achieve their highest performance.l'1 All
these evidence points toward the shift into ML-centered
EDA paradigms.

There is further complexity added by quantum-con-
scious device modeling in which the standard semicon-
ductor models cannot describe probabilistic quantum
interactions. Hybrid analytical ML models are suggested
in several works to predict leakage currents, tunnelling,
and reliability degradation in nanoscale devices.[™23]
The combined literature shows the insufficiency of the
assumptions of deterministic computation and supports
the need to incorporate quantum behaviors into EDA
flow. Moreover, the development of ML-based predic-
tive models has demonstrated to be successful in the
representation of multidimensional dependencies
among physical, structural, and architectural circuit
features.

These developments notwithstanding, little has been
done to develop an EDA framework using ML that
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considers quantum-aware devices, predictive circuit
synthesis, and multiobjective optimization. This gap is
filled in the current work, which establishes a single
framework that incorporates quantum-aware modeling,
Al-directed synthesis, and optimization of the RL to be
applied to HPC-oriented design in VLSI.

METHODOLOGY

Quantum-Aware Device Modeling Using
Physics-Guided ML

The nonclassical physical behavior of semiconduc-
tor devices that arises in the sub-nanometer regime
of semiconductor feature sizes cannot be modelled by
traditional models of devices unless quantum confine-
ment, band-to-band tunnelling, and stochastic carrier
transport are taken into account. The effects have a
strong impact on the threshold voltage stability, leak-
age current behavior, as well as switching reliability. In
order to deal with this complexity, the current frame-
work will employ a quantum-aware device modelling
methodology that integrates analytical semiconduc-
tor physics and machine-learning-based prediction of
parameters to guarantee accurate predictions for a wide
range of operating conditions. The device characteriza-
tion pipeline is used to improve the fidelity of the quan-
tum-aware model, which is based on multibias TCAD
sweeps in subthreshold, moderate inversion, and strong
inversion. The simulation scheme derives energy-band
diagrams, carrier concentration profiles, and local elec-
tric field strengths along the channel of the device to
obtain short-channel effects, drain-induced barrier low-
ering, and the band-to-band tunneling. These physical
quantities are represented as vectors and interred in a
high-dimensional feature showing that the ML regressor
can learn nonlinear relationships between the geometric
parameters and emergent quantum effects. The train-
ing data will comprise various variants of technology
of various effective channel lengths ranging between
5 nm and 1 nm to be robust across future technology
nodes. They add an adaptive regularization term, which
is a Poisson self-consistency term based on Schrodinger,
such that the predictions of the ML model are consis-
tent with the underlying electrostatics of a device. The
additional modeling layer is crucial in enhancing the
accuracy of prediction when exposed to temperature
variations, low-Vdd operation, and aging that is because
of stress conditions to facilitate the dependable down-
stream circuit synthesis.

The basis of the modelling strategy is a physics-directed
neural regression model that can predict leakage current
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I,, tunnelling probability P,, and threshold voltage vari-
ability AV,,. The leakage current model is written as:
I, = fu PRV, T) + aeb/ter

where f, () is a regression network that is trained on
device-level simulation data that had been extracted
in TCAD engines. The classical leakage component is
denoted by the term ae?‘) to allow the model to be
physically interpretable. The analytical constraints used
in integration inhibit the off-target behavior of physi-
cally significant trends, which is a natural phenomenon
when ML models are applied to predict behavior in areas
where there is a small amount of training data.

Simulation inputs and feature extraction with the use
of MLs and physics-based regularization are combined
in the workflow, as shown in Figure 1. Simulations of
devices give spatial and temporal maps of electron
density, distribution of electric fields, and deformation
of barriers, which are converted to high-quality train-
ing images to the model. The quantum-conscious pre-
dictions are then put into higher-level circuit synthesis
methods after training, where logic optimizers, place-
ment engines, and gate-sizing algorithms can use the
quantum-conscious predictions to make choices that are
sensitive to realistic device properties, such as quantum
leakage susceptibility and variability. This layer of uni-
fied modelling language makes sure that EDA processes
downstream are kept in line with the real nanoscale
device behavior.

ML-Enabled Circuit Synthesis and Predictive Design
Automation

The suggested circuit synthesis framework is an addition
to the established EDA algorithms that incorporate ML
and RL models that improve logic mapping, gate sizing,
interconnect synthesis, and multiobjective optimization.
ML provides predictive data about the design space by
estimating the performance measures of timing delay
T, dynamics and leakage power P_ critical area A, and
quantum reliability Q. The system is controlled by a
generalized multiobjective cost function:

C=wT +WA +wP -wQ,

and the weighting coefficients w,, w,, w,, W, have the
effect of varying the importance attached to each
of the design metrics. This design can be adapted to a
wide variety of design requirements, such as embed-
ded design platforms, which are sensitive to power
and high-performance  computational pipelines.
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Fig. 1: Al/ML-driven quantum-aware device modeling architecture.

The supervised ML models that are trained on historical
synthesis datasets make predictions on logic decomposi-
tion patterns and gate transformations that are most likely
to yield a product with minimum C. Predictions are con-
firmed by checking them on incremental timing and power
within a short time. A RL layer is an addition to predictive
synthesis, which views placement and routing as a sequen-
tial decision process. Exploration of modifications in gate
sizes, wire paths, and spatial placements is done by the
RL agent to identify modifications that produce lower cost
values. The reward of the agent is defined as:

R=-C

In this way, they promote changes that bring about
minimization of timing, space, and power, and maximi-
zation of quantum reliability. Some of the main param-
eters employed in the process of optimization and the
objective thereof are summarized in Table 1. These
parameters are used as control metrics during the
synthesis process that is run by the ML, thus guaran-
teeing balanced results even when the design is under
extreme constraints that are quantum-aware. In order
to interface the ML predictions with the synthesis tool
chain, a hierarchical design-space encoding is designed,
and every circuit is represented as structural, elec-
trical, and timing space. The structural elements are
the connecting components of gates to fans-outs; the
electrical components are the loading, slew, and cou-
pling capacitances; and finally, timing components are
those that include the sensitivities of the stage delays
to quantum-aware device models. The predictive net-
work generates probability distributions on transfor-
mation operators including decomposition, rewriting,
resynthesis, and technology mapping to allow the sys-
tem to dynamically choose optimistic transformations.
A pruning mechanism that is supported by a reinforce-
ment-learning process eliminates transformations that
have low expected reward, which decrease search tree

0 [

Table 1: Optimization parameters for
ML-assisted quantum-aware synthesis.

Parameter | Description Target Objective
T, Critical path delay Minimize
P. Power consumption Minimize
A Chip area Minimize
Q. Quantum reliability Maximize
P, Tunneling probability Minimize

expansion and speed up convergence. The predictive
automation is also enhanced by a sensitivity analysis
through gradients that measure the impact of modest
changes on overall power and slack budgets, and the
system could refine design goals through many iterations
with the lowest amount of computation.

This predictive synthesis module saves a lot of time on
exploration since it can eliminate potential paths of non-
optimal layouts and train context-sensitive design trans-
formations depending on quantum-sensitive aspects of
device properties.

Multiobjective Circuit Optimization by RL Framework

A multiobjective RL engine that progressively optimizes
synthesized circuits by examining the layout feasibility,
routing congestion, timing slack distribution, and quan-
tum reliability factors is the third element of the pro-
posed methodology. The RL framework consists of an
actor-critic algorithm, which optimizes its policy as the
value estimation process and advantage learning.

The environment state s, at any single optimization step t
represents a full hardware representation, which includes:

« Distributions of timing slacks, local and global.
« Interconnect congestion profiles.
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» Quantum-sensitive leakage and tunnelling.
 Density and clustering of physical place.

The action set a, contains gate resizing, cell moving,
inserting buffers, wire re-routing, and topology re-
configuring. Such transformations have to meet electri-
cal and functional constraints, and enhance the score of
multiobjectives.

The new policy of the actor network is as follows:
VJ(6) = E[V,logn,(als)A]

In which, A, is the temporal advantage function calcu-
lated based on critic estimates. The formulation is sta-
ble in converging to superior design policies.

An abstract representation of such RL-based optimiza-
tion system is illustrated in Figure 2, which breaks down
the workflow into an environment assessment, RL-based
decision-making and feedbacks that combine timing,
reliability, and quantum leakage analysis. The figure
illustrates the flow of intermediate states through the
training loop, which allows the agent to learn long-term
optimization strategies that are computationally infeasi-
ble under deterministic search.

By combining ML predictive modeling and RL deci-
sion-making, a closed-loop optimization scheme is
formed, which can adjust itself constantly to the chang-
ing quantum-aware design space. This leads to less time
design cycle, high performance consistency, and bet-
ter manufacturability of nanoscale VLSI circuits. The
RL agent also uses a hybrid continuous discrete action
space that is optimized using proximal policy optimiza-
tion (PPO) to support high-dimensional physical design
actions. Cell displacement vectors, gate sizing gradi-
ents, and interconnect length changes are controlled
by continuous actions, and topology restructuring, buf-
fer insertion, and reassigning layers are caused by dis-
crete actions. The environment calculates a multi-term

Environment State

%}D ‘ Action Quantum
Fig. 2: Reinforcement learning architecture for
multiobjective VLSI optimization.

Reliability

Journal of VLSI circuits and systems, ISSN 2582-1458

reward, which includes timing slack margin, routing con-
gestion penalty, leakage deviation, and the gain of reli-
ability. The step t reward is modelled to be:

R, = A ASlack, - A,Cong, — Al + 1,AQ ,

where the ), terms are weights of each of the met-
rics based on design priorities. A temporal-difference
critic looks forward to long-term benefits by estimat-
ing the rewards over future, which will most likely be
discounted:

V(St) = E{Z%Ruk | St]
k=0

The integration of quantum reliability and tunnelling-
conscious cost will make sure that optimizations do
not go against the constraints of nanoscale devices. It
is a highly parameterized RL environment in which the
agent can optimize sequences of actions by exploring
that space and finding better optimizing solutions than
heuristics in other environments because it is a deter-
ministic environment.

RESULTS AND DISCUSSION

The quantum-conscious, ML-assisted optimization
framework was carefully tested with the help of bench-
mark circuits on an HPC-level and synthesized at 7 nm
and 5 nm advanced technology nodes. The review is
based on three essential VLSI performance factors,
namely, timing predictability, leakage estimation fidel-
ity, and circuit optimization via multiobjective RL.
Figures 3-5 and Tables 2 and 3 are the summaries of the
gains done by the addition of hybrid Al models into the
pipeline of EDA.

ST, T, BT R |
e M U N O
o w o W o

Critical Path Delay (ps)
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~
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Baseline
Proposed ML Framework
Cl Cc2 Cc3 C4 Cs C6
Benchmark Circuit

IS
v
=)

Fig. 3: Timing improvement across quantum-aware
benchmark circuits.
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Fig. 4: Predicted versus simulated leakage currents.
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o
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Fig. 5: RL-based multiobjective optimization
improvements.

Table 2. Circuit performance comparison
before and after ML optimization.

Metric Baseline Proposed Framework
Delay (ps) 58 47

Power (mW) 14.6 12.3

Area (um?2) 820 790

Table 3: Quantum-aware reliability
and leakage comparison.

Metric Baseline ML-Enhanced
Leakage (nA) 33 24
Reliability (%) 88 95
Tunneling Probability 0.17 0.09

Figure 3 demonstrates that time analysis indicates
that this framework has a considerable improvement
on the correctness of prediction of the critical path
and the effectiveness of timing optimization. The line
chart also shows that there is a definite delay reduction
curve over a set of HPC circuits standard in the indus-
try. The ML-enhanced timing model also rectifies the

8 [

underestimation and pessimistic slack predictions that
are usually encountered in traditional analysis models.
The system is able to achieve up to 18% critical path
delay reduction as ML accuracy is improved, which is a
significant improvement compared to conventional gate-
level modelling. These findings confirm the advantage of
integrating physics-guided ML with timing closure proce-
dures, particularly when it comes to nanoscale variabil-
ity conditions.

Leakage behavior is one of the key factors in the
nanoscale circuit reliability, especially aggressive scal-
ing at 5 nm. Figure 4 shows a scatter plot of the pre-
dicted leakage values of the proposed hybrid system of
physics-ML model and the values of the full TCAD/SPICE
simulation. The fact that the predicted points are very
close to the ideal correlation line shows that the model
is fidel to it. The deviations of the prediction are also
in acceptable margins, which validates the hybrid meth-
odology to have a good representation of tunnelling
processes, short channel effects, and quantum barrier
modulation. This high numerical correlation strength-
ens the fact that the ML-enhanced model is suitable in
predicting leakage at an early stage and exploring the
design space.

A RL engine is also incorporated into the framework in
order to optimize multiobjective circuits. The RL-based
method, as shown in the Table of Results in Figure 5,
brings high gains with respect to timing, power, and
area measures and creates an average of 22% increase
in the overall optimization score relative to classical
heuristic methods. The bar chart shows that there is
uniformly high RL dominance on various benchmarks,
which proves that the agent can learn generalized opti-
mization policies, which takes into consideration trade-
offs between delay, leakage, reliability, and area. The
outcome of this suggests the possibility of RL substitut-
ing manually tuned or rule-based optimization steps in
future EDA flows. These observations, based on graph-
ical representations, are further supported by quanti-
tative judgments. Table 2 summarizes the performance
measures prior to and after optimizing the ML. The delay
is reduced to 47 ps, power consumption to 12.3 mW, and
silicon area reduces slightly to 790 um?. All these add up
to the framework fulfilling its role in energy efficiency
as well as physical compactness which are essential to
HPC workloads where thermal and density are the most
significant considerations.

The summary of the reliability and leakage behav-

ior of quantum-aware devices modeling is pre-
sented in Table 3. The ML-enhanced model leakage is
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decreased from 33 nA to 24 nA, which indicates that it
is more aware of tunnelling, barrier-modulation effects.
Reliability is 95 in comparison to 88 and probability of
tunnelling is reduced to 0.09 as compared to 0.17. These
underscore the interplay between quantum-conscious
physical modeling and ML-based correction layers, which
offer safe predictions on the behavior of scaled-device
under variability and aging conditions.

In all the benchmark circuits considered, timing closure,
leakage suppression, and layout refinement improve-
ment reduce considerably depending on the quality of
the quantum-aware device model used in the synthesis.
The circuits with high leakage because of tunnelling or
large variation in threshold voltages had the largest tim-
ing advantages and proved that correction of nanoscale
device errors has a large effect on the behavior of crit-
ical paths. This reduction in power is highly contributed
by the RL-induced modifications in gate size and inter-
connect reorganization that also decrease capacitive
loading and maximize switching activity. These opti-
mizations have the direct effect of reducing dynamic
power contributions and at the same time reducing leak-
age contribution in near threshold operating regions.

It is also found that optimization trajectory analysis
reveals that the RL agent is able to discover consistent
design-space gaps that are never explored by the conven-
tional heuristic-based flows of EDA. The initial iterations
of the reinforcement learning (RL) process focus on min-
imizing routing congestion, while subsequent iterations
aim to achieve a balance between timing slack optimi-
zation and area compaction. The convergence heatmaps
show that the agent acquires the ability to rearrange cells
to eliminate localized electrostatic perturbations that
enhance quantum leakage effects. Further analysis of
state changes makes it clear that the policy is gradually
trained to prefer layout changes with long-term benefits
of timing reliability and not local short-term benefits. The
results combined prove that the combination of ML-based
prediction and RL-based iterative refinement gives more
stable and global optimal solutions, particularly in cir-
cuits that are at the extreme scaling limits.

In general, the findings indicate that collaboration
between ML, RL, and quantum-aware modeling makes
a significant change in terms of prediction accuracy,
optimization efficiency, and the quality of multiobjec-
tive decisions. The suggested framework does not only
hasten the convergence of design but also boosts the
circuit robustness making it an effective ingredient in
future-generation EDA schemes of HPC-oriented VLSI
design in sub-7-nm scales.
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CONCLUSION

This paper introduces an EDA implementation of Al/
ML with the ability to do quantum-aware VLSI circuit
synthesis and multiobjective optimization of advanced
semiconductor technologies. The framework com-
bines modeling of physics-guided devices, modeling of
ML-assisted logic and physical synthesis, and optimiza-
tion of RL to get a good image of the phenomena asso-
ciated with quantum-scaled phenomena that appeared
in deeply scaled nodes. By introducing parameters like
tunneling probability, leakage current behavior, elec-
trostatic variability, and threshold variations into the
optimization pipeline, synthesis engines can be run at
greater levels of physical fidelity and increased predic-
tion accuracy.

The experimental assessment shows that there are
steady enhancements in such design measures as timing
closure, leakage estimation, routing efficiency, and over-
all convergence of optimization. The physics-guided ML
models eliminate a lot of uncertainty in the device-level
behavior, and the RL subsystem can efficiently search
complex design spaces that cannot be searched effi-
ciently using conventional heuristics. A combination of
these elements leads to accelerated convergence, less
computation cost, and layout generation with a higher
reliability and power efficiency. Also, the scalability of
the framework to new device architecture, voltage scal-
ing schemes, and the interconnect technology can be
easily adapted with little or no significant methodologi-
cal modifications.

The results show that predictive intelligence and adap-
tive decision-making mechanisms need to be incor-
porated in VLS| design flows in the future. Further
development can be with a combination of the frame-
work with quantum-accelerated simulation systems,
automation of topology-search systems by generative
models, and self-calibration optimization loops triggered
by silicon feedback. Such developments will be useful
toward the wider applicability of such directions to new
ultra-scaled and post-CMOS technology for more com-
plex designs, which maintain performance, strength,
and energy efficiency at increasingly more demanding
physical limits.
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