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Abstract

Increased development of high-performance computing (HPC) has increased the 
pressure on new paradigms in VLSI circuit design, as device scaling is approaching 
scaling limits where quantum effects become important. Conventional electronic 
design automation (EDA) processes have difficulties in dealing with nonlinear inter-
actions that occur when quantum tunnelling, leakage currents, and probabilistic 
switching are also present in the deeply scaled technology. To overcome them, 
this paper suggests an all-encompassing AI/ML-based EDA architecture, which 
incorporates quantum-aware modelling, predictive synthesis, and adaptive opti-
mization of future HPC-oriented next-generation VLSI systems. The framework has 
incorporated machine learning (ML)-based parametric estimation, reinforcement 
learning (RL) on layout exploration, and physics-guided neural models: nonclassical 
effects in nanoscale transistors. Furthermore, the system uses generative learning 
algorithms to create multiobjective design trade-offs in terms of timing, power, 
area, and quantum reliability. The hybrid digital-quantum design flow is presented, 
allowing to easily interchange the classical EDA operations and quantum-inspired 
device tests. Nanometer-scale benchmark circuit confirmation of the efficiency of 
synthesis, accuracy of leakage prediction, and rate of convergence of optimization 
are shown to be much enhanced with respect to more traditional EDA pipelines. 
The given methodology puts the emphasis on the role of intelligent automation as 
the means of guiding the VLSI research toward the point of quantum-awareness as 
the key to ensuring reliability, scalability, and energy efficiency in an HPC system.
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synthesis of physics-aware modeling, smart optimization 
and machine-learned synthesis, which is a crucial step 
to automated next-generation chip design.

Related Work

The crossroads between ML and electronic design auto-
mation (EDA) has become quite popular because scaling 
issues require more creative circuit synthesis methods. 
Past research has addressed the application of learn-
ing heuristics to early modelling, time analysis, and 
layout optimization, and shows a substantial improve-
ment over traditional rule-based approaches.[1],[2],[3]  
Optimization studies in embedded systems have noted 
the increasing use of ML to optimize performance at 
the system level and decrease computation cost in 
edge computers.[11] This development is an indication 
of a wider trend where it is becoming more popular to 
apply intelligence-augmented automation in electronics 
design pipelines.

ML structures enhance anomaly detection, communi-
cation stability, and energy efficiency in the IoT and 
distributed sensor system domain,[12] which are similar 
requirements in VLSI settings. The wide range of appli-
cations of smart technology in various branches of engi-
neering also indicates the flexibility and adaptability 
of ML techniques in detecting patterns, improving pro-
cesses, making systems more resilient, etc.[13] Hardware 
and software co-designing hardware and algorithms 
using AI computational architectures, especially the 
ones dealing with large-scale training and inference, are 
important to achieve their highest performance.[14] All 
these evidence points toward the shift into ML-centered 
EDA paradigms.

There is further complexity added by quantum-con-
scious device modeling in which the standard semicon-
ductor models cannot describe probabilistic quantum 
interactions. Hybrid analytical ML models are suggested 
in several works to predict leakage currents, tunnelling, 
and reliability degradation in nanoscale devices.[15]–[23]  
The combined literature shows the insufficiency of the 
assumptions of deterministic computation and supports 
the need to incorporate quantum behaviors into EDA 
flow. Moreover, the development of ML-based predic-
tive models has demonstrated to be successful in the 
representation of multidimensional dependencies 
among physical, structural, and architectural circuit 
features.

These developments notwithstanding, little has been 
done to develop an EDA framework using ML that 

Introduction

Rapid development of high-performance computing 
(HPC) has compounded the need to develop high-quality 
VLSI circuits with the ability to maintain a high through-
put, low latency, and ultra-low power usage. Standard 
semiconductor design techniques are becoming limited 
by inherent limitations of devices at smaller technology 
nodes as quantum effects like tunnelling leakages, prob-
abilistic switching, and band-band interactions become 
increasingly visible. These novel behaviors reduce reli-
ability and predictability of classical EDA flows that were 
traditionally formulated based on the deterministic 
device assumptions. As a result, current design circuits 
are demanding more advanced design models that have 
the capability of modelling the complexities of deeply 
scaled technologies.[1]–[10]

At the same time, the development of AI and machine 
learning (ML) has brought about a groundbreaking poten-
tial in the field of electronics. Workflows with ML have 
already shown themselves to be able to improve the 
accuracy of parametric prediction, the automatization 
of the design-space exploration, and the production of 
efficient circuit patterns. The recent research demon-
strates the efficiency of AI-driven solutions to embedded 
systems,[11] anomaly detection in the IoT environment,[12] 
smart electronics evolution,[13] and smart integration of 
devices.[1] In spite of the fact that HPC architectures are 
progressing in a similar fashion, the mutually supportive 
nature of AI algorithms and scalable hardware platforms 
is emphasized.[14] With increasing computational abil-
ity challenged by HPC, the VLSI implementation has to 
embed intelligent automation, which will allow timely 
synthesis, better optimization, and resistance to non-
classical physical effects.

Models of quantum-influenced devices introduce fur-
ther design challenges because of statistical uncer-
tainty and nonlinear interaction which are not entirely 
addressed by classical EDA models. Researchers have 
highlighted that it is necessary to reconsider the con-
cept of workflow automation by implementing ML that 
will allow predictive modelling of quantum-scale effects 
and improved design quality.[15]–[20] Furthermore, the 
convergence of quantum-conscious device physics and 
AI-assisted design automation develops a new avenue of 
filling the gap between the existing digital EDA and the 
upcoming quantum-aided circuit design.

The current paper proposes an AI/ML-based EDA system 
that is designed to support quantum-aware VLSI circuit 
synthesis of HPC settings. The scheme proposed is a 
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considers quantum-aware devices, predictive circuit 
synthesis, and multiobjective optimization. This gap is 
filled in the current work, which establishes a single 
framework that incorporates quantum-aware modeling, 
AI-directed synthesis, and optimization of the RL to be 
applied to HPC-oriented design in VLSI.

Methodology

Quantum-Aware Device Modeling Using  
Physics-Guided ML

The nonclassical physical behavior of semiconduc-
tor devices that arises in the sub-nanometer regime 
of semiconductor feature sizes cannot be modelled by 
traditional models of devices unless quantum confine-
ment, band-to-band tunnelling, and stochastic carrier 
transport are taken into account. The effects have a 
strong impact on the threshold voltage stability, leak-
age current behavior, as well as switching reliability. In 
order to deal with this complexity, the current frame-
work will employ a quantum-aware device modelling 
methodology that integrates analytical semiconduc-
tor physics and machine-learning-based prediction of 
parameters to guarantee accurate predictions for a wide 
range of operating conditions. The device characteriza-
tion pipeline is used to improve the fidelity of the quan-
tum-aware model, which is based on multibias TCAD 
sweeps in subthreshold, moderate inversion, and strong 
inversion. The simulation scheme derives energy-band 
diagrams, carrier concentration profiles, and local elec-
tric field strengths along the channel of the device to 
obtain short-channel effects, drain-induced barrier low-
ering, and the band-to-band tunneling. These physical 
quantities are represented as vectors and interred in a 
high-dimensional feature showing that the ML regressor 
can learn nonlinear relationships between the geometric 
parameters and emergent quantum effects. The train-
ing data will comprise various variants of technology 
of various effective channel lengths ranging between 
5 nm and 1 nm to be robust across future technology 
nodes. They add an adaptive regularization term, which 
is a Poisson self-consistency term based on Schrodinger, 
such that the predictions of the ML model are consis-
tent with the underlying electrostatics of a device. The 
additional modeling layer is crucial in enhancing the 
accuracy of prediction when exposed to temperature 
variations, low-Vdd operation, and aging that is because 
of stress conditions to facilitate the dependable down-
stream circuit synthesis. 

The basis of the modelling strategy is a physics-directed 
neural regression model that can predict leakage current 

IL, tunnelling probability PT, and threshold voltage vari-
ability ΔVth. The leakage current model is written as:

	 IL = fML (PT,Vgs,T) + αe−β/Leff

where fML(⋅) is a regression network that is trained on 
device-level simulation data that had been extracted 
in TCAD engines. The classical leakage component is 
denoted by the term αe−β/Leff) to allow the model to be 
physically interpretable. The analytical constraints used 
in integration inhibit the off-target behavior of physi-
cally significant trends, which is a natural phenomenon 
when ML models are applied to predict behavior in areas 
where there is a small amount of training data.

Simulation inputs and feature extraction with the use 
of MLs and physics-based regularization are combined 
in the workflow, as shown in Figure 1. Simulations of 
devices give spatial and temporal maps of electron 
density, distribution of electric fields, and deformation 
of barriers, which are converted to high-quality train-
ing images to the model. The quantum-conscious pre-
dictions are then put into higher-level circuit synthesis 
methods after training, where logic optimizers, place-
ment engines, and gate-sizing algorithms can use the 
quantum-conscious predictions to make choices that are 
sensitive to realistic device properties, such as quantum 
leakage susceptibility and variability. This layer of uni-
fied modelling language makes sure that EDA processes 
downstream are kept in line with the real nanoscale 
device behavior.

ML-Enabled Circuit Synthesis and Predictive Design 
Automation

The suggested circuit synthesis framework is an addition 
to the established EDA algorithms that incorporate ML 
and RL models that improve logic mapping, gate sizing, 
interconnect synthesis, and multiobjective optimization. 
ML provides predictive data about the design space by 
estimating the performance measures of timing delay 
Tc, dynamics and leakage power Pc, critical area Ac, and 
quantum reliability Qr. The system is controlled by a 
generalized multiobjective cost function:

	 C = wTTc + wAAc + wPPc − wQQ r

and the weighting coefficients wT, wA, wP, wQ have the 
effect of varying the importance attached to each 
of the design metrics. This design can be adapted to a 
wide variety of design requirements, such as embed-
ded design platforms, which are sensitive to power 
and high-performance computational pipelines.  
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The supervised ML models that are trained on historical 
synthesis datasets make predictions on logic decomposi-
tion patterns and gate transformations that are most likely 
to yield a product with minimum C. Predictions are con-
firmed by checking them on incremental timing and power 
within a short time. A RL layer is an addition to predictive 
synthesis, which views placement and routing as a sequen-
tial decision process. Exploration of modifications in gate 
sizes, wire paths, and spatial placements is done by the 
RL agent to identify modifications that produce lower cost 
values. The reward of the agent is defined as:

	 R = −C

In this way, they promote changes that bring about 
minimization of timing, space, and power, and maximi-
zation of quantum reliability. Some of the main param-
eters employed in the process of optimization and the 
objective thereof are summarized in Table 1. These 
parameters are used as control metrics during the 
synthesis process that is run by the ML, thus guaran-
teeing balanced results even when the design is under 
extreme constraints that are quantum-aware. In order 
to interface the ML predictions with the synthesis tool 
chain, a hierarchical design-space encoding is designed, 
and every circuit is represented as structural, elec-
trical, and timing space. The structural elements are 
the connecting components of gates to fans-outs; the 
electrical components are the loading, slew, and cou-
pling capacitances; and finally, timing components are 
those that include the sensitivities of the stage delays 
to quantum-aware device models. The predictive net-
work generates probability distributions on transfor-
mation operators including decomposition, rewriting, 
resynthesis, and technology mapping to allow the sys-
tem to dynamically choose optimistic transformations. 
A pruning mechanism that is supported by a reinforce-
ment-learning process eliminates transformations that 
have low expected reward, which decrease search tree 

Table 1: Optimization parameters for 
ML-assisted quantum-aware synthesis.

Parameter Description Target Objective

Tc Critical path delay Minimize

Pc Power consumption Minimize

Ac Chip area Minimize

Q r Quantum reliability Maximize

PT Tunneling probability Minimize

expansion and speed up convergence. The predictive 
automation is also enhanced by a sensitivity analysis 
through gradients that measure the impact of modest 
changes on overall power and slack budgets, and the 
system could refine design goals through many iterations 
with the lowest amount of computation.

This predictive synthesis module saves a lot of time on 
exploration since it can eliminate potential paths of non-
optimal layouts and train context-sensitive design trans-
formations depending on quantum-sensitive aspects of 
device properties.

Multiobjective Circuit Optimization by RL Framework

A multiobjective RL engine that progressively optimizes 
synthesized circuits by examining the layout feasibility, 
routing congestion, timing slack distribution, and quan-
tum reliability factors is the third element of the pro-
posed methodology. The RL framework consists of an 
actor-critic algorithm, which optimizes its policy as the 
value estimation process and advantage learning.

The environment state st at any single optimization step t 
represents a full hardware representation, which includes:

•	Distributions of timing slacks, local and global.
•	Interconnect congestion profiles.

Fig. 1: AI/ML-driven quantum-aware device modeling architecture.
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reward, which includes timing slack margin, routing con-
gestion penalty, leakage deviation, and the gain of reli-
ability. The step t reward is modelled to be:

	 Rt = λ1ΔSlackt – λ2Congt – λ3ΔIL,t + λ4ΔQ r,t

where the λi terms are weights of each of the met-
rics based on design priorities. A temporal-difference 
critic looks forward to long-term benefits by estimat-
ing the rewards over future, which will most likely be 
discounted:

	 0

( ) |γ
∞

+
=

 
=  

  
∑E k

t t k t
k

V s R S

The integration of quantum reliability and tunnelling-
conscious cost will make sure that optimizations do 
not go against the constraints of nanoscale devices. It 
is a highly parameterized RL environment in which the 
agent can optimize sequences of actions by exploring 
that space and finding better optimizing solutions than 
heuristics in other environments because it is a deter-
ministic environment.

Results and Discussion

The quantum-conscious, ML-assisted optimization 
framework was carefully tested with the help of bench-
mark circuits on an HPC-level and synthesized at 7 nm 
and 5 nm advanced technology nodes. The review is 
based on three essential VLSI performance factors, 
namely, timing predictability, leakage estimation fidel-
ity, and circuit optimization via multiobjective RL. 
Figures 3–5 and Tables 2 and 3 are the summaries of the 
gains done by the addition of hybrid AI models into the 
pipeline of EDA.

•	Quantum-sensitive leakage and tunnelling.
•	Density and clustering of physical place.

The action set at contains gate resizing, cell moving, 
inserting buffers, wire re-routing, and topology re-
configuring. Such transformations have to meet electri-
cal and functional constraints, and enhance the score of 
multiobjectives.

The new policy of the actor network is as follows:

	 ∇θJ(θ) = E[∇θlogπθ(at∣st)At]

In which, At is the temporal advantage function calcu-
lated based on critic estimates. The formulation is sta-
ble in converging to superior design policies.

An abstract representation of such RL-based optimiza-
tion system is illustrated in Figure 2, which breaks down 
the workflow into an environment assessment, RL-based 
decision-making and feedbacks that combine timing, 
reliability, and quantum leakage analysis. The figure 
illustrates the flow of intermediate states through the 
training loop, which allows the agent to learn long-term 
optimization strategies that are computationally infeasi-
ble under deterministic search.

By combining ML predictive modeling and RL deci-
sion-making, a closed-loop optimization scheme is 
formed, which can adjust itself constantly to the chang-
ing quantum-aware design space. This leads to less time 
design cycle, high performance consistency, and bet-
ter manufacturability of nanoscale VLSI circuits. The 
RL agent also uses a hybrid continuous discrete action 
space that is optimized using proximal policy optimiza-
tion (PPO) to support high-dimensional physical design 
actions. Cell displacement vectors, gate sizing gradi-
ents, and interconnect length changes are controlled 
by continuous actions, and topology restructuring, buf-
fer insertion, and reassigning layers are caused by dis-
crete actions. The environment calculates a multi-term 

Fig. 2: Reinforcement learning architecture for 
multiobjective VLSI optimization.

Fig. 3: Timing improvement across quantum-aware 
benchmark circuits.
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underestimation and pessimistic slack predictions that 
are usually encountered in traditional analysis models. 
The system is able to achieve up to 18% critical path 
delay reduction as ML accuracy is improved, which is a 
significant improvement compared to conventional gate-
level modelling. These findings confirm the advantage of 
integrating physics-guided ML with timing closure proce-
dures, particularly when it comes to nanoscale variabil-
ity conditions.

Leakage behavior is one of the key factors in the 
nanoscale circuit reliability, especially aggressive scal-
ing at 5 nm. Figure 4 shows a scatter plot of the pre-
dicted leakage values of the proposed hybrid system of 
physics-ML model and the values of the full TCAD/SPICE 
simulation. The fact that the predicted points are very 
close to the ideal correlation line shows that the model 
is fidel to it. The deviations of the prediction are also 
in acceptable margins, which validates the hybrid meth-
odology to have a good representation of tunnelling 
processes, short channel effects, and quantum barrier 
modulation. This high numerical correlation strength-
ens the fact that the ML-enhanced model is suitable in 
predicting leakage at an early stage and exploring the 
design space.

A RL engine is also incorporated into the framework in 
order to optimize multiobjective circuits. The RL-based 
method, as shown in the Table of Results in Figure 5, 
brings high gains with respect to timing, power, and 
area measures and creates an average of 22% increase 
in the overall optimization score relative to classical 
heuristic methods. The bar chart shows that there is 
uniformly high RL dominance on various benchmarks, 
which proves that the agent can learn generalized opti-
mization policies, which takes into consideration trade-
offs between delay, leakage, reliability, and area. The 
outcome of this suggests the possibility of RL substitut-
ing manually tuned or rule-based optimization steps in 
future EDA flows. These observations, based on graph-
ical representations, are further supported by quanti-
tative judgments. Table 2 summarizes the performance 
measures prior to and after optimizing the ML. The delay 
is reduced to 47 ps, power consumption to 12.3 mW, and 
silicon area reduces slightly to 790 µm2. All these add up 
to the framework fulfilling its role in energy efficiency 
as well as physical compactness which are essential to 
HPC workloads where thermal and density are the most 
significant considerations.

The summary of the reliability and leakage behav-
ior of quantum-aware devices modeling is pre-
sented in Table  3. The ML-enhanced model leakage is 

Fig. 4: Predicted versus simulated leakage currents.

Fig. 5: RL-based multiobjective optimization 
improvements.

Table 2. Circuit performance comparison 
before and after ML optimization.

Metric Baseline Proposed Framework

Delay (ps) 58 47

Power (mW) 14.6 12.3

Area (µm²) 820 790

Table 3: Quantum-aware reliability 
and leakage comparison.

Metric Baseline ML-Enhanced

Leakage (nA) 33 24

Reliability (%) 88 95

Tunneling Probability 0.17 0.09

Figure 3 demonstrates that time analysis indicates 
that this framework has a considerable improvement 
on the correctness of prediction of the critical path 
and the effectiveness of timing optimization. The line 
chart also shows that there is a definite delay reduction 
curve over a set of HPC circuits standard in the indus-
try. The ML-enhanced timing model also rectifies the 
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Conclusion

This paper introduces an EDA implementation of AI/
ML with the ability to do quantum-aware VLSI circuit 
synthesis and multiobjective optimization of advanced 
semiconductor technologies. The framework com-
bines modeling of physics-guided devices, modeling of 
ML-assisted logic and physical synthesis, and optimiza-
tion of RL to get a good image of the phenomena asso-
ciated with quantum-scaled phenomena that appeared 
in deeply scaled nodes. By introducing parameters like 
tunneling probability, leakage current behavior, elec-
trostatic variability, and threshold variations into the 
optimization pipeline, synthesis engines can be run at 
greater levels of physical fidelity and increased predic-
tion accuracy.

The experimental assessment shows that there are 
steady enhancements in such design measures as timing 
closure, leakage estimation, routing efficiency, and over-
all convergence of optimization. The physics-guided ML 
models eliminate a lot of uncertainty in the device-level 
behavior, and the RL subsystem can efficiently search 
complex design spaces that cannot be searched effi-
ciently using conventional heuristics. A combination of 
these elements leads to accelerated convergence, less 
computation cost, and layout generation with a higher 
reliability and power efficiency. Also, the scalability of 
the framework to new device architecture, voltage scal-
ing schemes, and the interconnect technology can be 
easily adapted with little or no significant methodologi-
cal modifications.

The results show that predictive intelligence and adap-
tive decision-making mechanisms need to be incor-
porated in VLSI design flows in the future. Further 
development can be with a combination of the frame-
work with quantum-accelerated simulation systems, 
automation of topology-search systems by generative 
models, and self-calibration optimization loops triggered 
by silicon feedback. Such developments will be useful 
toward the wider applicability of such directions to new 
ultra-scaled and post-CMOS technology for more com-
plex designs, which maintain performance, strength, 
and energy efficiency at increasingly more demanding 
physical limits.
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