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Cryptographic Hardware, cryptographic workloads has been fueling the need to have highly efficient neural net-
Systolic Arrays, work accelerators embedded within state-of-the-art VLS| architectures. Traditional
Hardware-Aware Optimization accelerators that are optimized to either DSP or cryptography are no longer capable of
supporting the power, latency, and throughput requirements of the current embedded and
high-performance computing systems. With the increasing complexity of neural workloads
and the increasing security assurances needed with cryptographic operations, energy effi-
ciency is becoming more important than ever. It is a unified, energy-efficient accelerator
design that combines the use of neural processing, DSP kernels, and cryptographic primi-
tives in a single VLSI system. The framework suggested utilizes hardware-aware quantiza-
tion, systolic TA, reconfigurable DSP pipeline, and low-power cryptographic cores designed
with the aid of machine learning-driven design frameworks. Learning is performed to
search through architectural designs via reinforcement learning, and the single-objective
bi-objective optimization is directed by hardware-aware optimization of performance in
terms of area, power, and latency. Improved throughput-per-watt, low-latency process-
ing, and secure execution are experimentally proven using 7 nm and 5 nm design nodes
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INTRODUCTION

The growing overlap of artificial intelligence, digital
signal processing (DSP), and cryptography needs in the
current embedded systems has compelled the need to
develop energy-efficient hardware architectures that
can execute highly concurrent workloads with the low-
est latency. Neural network accelerator devices now
have to coexist with DSP workloads of filtering, modu-
lation, and feature extraction while also being able to
execute cryptographic primitives in order to achieve
secure communication, authentication, and encrypted
computation. The challenges this integration poses to
VLSI design are significant, especially at the advanced
nodes of technology, where the energy dissipation, data
movement overhead, and complexity of the algorithm
used greatly impact the performance of a system. Of
critical concern is energy efficiency, particularly since
edge devices, loT platforms, and autonomous systems
are all dependent on low-power units of computing real-
ized through continual operation.

The recent developments in neural accelerators empha-
size the enhancement of the low-power convolutional
computation, optimization of inference, and edge-
friendly neural architectures, making it possible to
achieve increased throughput with less energy use.l'""
Other similar trends include DSP-specific VLSI architec-
tures in which approximate computing, systolic arrays,
and fine-grained parallelism offer tangible benefits in
processing speed and power savings. Simultaneously,
cryptographic accelerators keep on developing pipe-
lined AES cores, lightweight encryption modules, and
high-performance secure computing pipelines that
can handle the increasing cybersecurity requirements.
121 This points to the need to have single accelerator
designs that are capable of performing Al, DSP, and
security workloads on a single hardware platform.

The VLSI optimization with the use of machine learn-
ing has become popular to solve the complex design
tradeoffs of multidomain architectures.l*"® Neural
architecture search hardware-aware neural architec-
ture search allows joint optimization of compute, mem-
ory, and interconnect architecture, whereas design
techniques based on reinforcement learning enable
exploration of the large architectural design space auto-
matically. Moreover, more current accelerators are being
designed with quantization-aware cores, configurable
systolic cores, and domain-specific instruction sets,
which are adaptable to mixed-DSP-Al applications.['622
In spite of this progress, there has been little study of
integrated systems that can facilitate neural inference,

»

signal processing, and secure cryptographic computation
all in one, in an energy-efficient system.

The gap addressed by this article is that an optimized
neural-DSP-crypto accelerator is proposed based on
advanced VLS| techniques and architectural optimiza-
tion guided by machine learning. It aims at providing a
scalable architecture that will fulfill the strict energy
and latency challenges of future generations of secure
Al systems.

RELATED WORK

Recent studies in energy-efficient neural accelerators
point to great advances in terms of power saving and
performance. Low-precision arithmetic, pruning, activa-
tion compression, and systolic tensor arrays are exam-
ples of techniques that have proved to be the primary
mechanisms of minimizing data movement, and enhanc-
ing throughput-per-watt.["*¢'% FPGA- and ASIC-based
accelerators have been developed with further steps
of substantial gains in the convolutional and fully con-
nected operations as they optimize the memory hierar-
chies and processing element (PEs) layouts. It is on these
architectures that Al has been integrated with classical
computation tasks in small hardware units.

DSP VLSI architectures have also developed by means
of approximate arithmetic circuits, workload-conscious
scaling, and hardware-software cooptimization.*?'"! The
current DSP accelerators employ reconfigurable systolic
arrays, parallel multiply-accumulate units, and pipelined
filters, which are used to handle high-speed streaming
data tasks. The total power consumption of real-time
systems has been greatly minimized due to the combi-
nation of approximate computing and low-power arith-
metic units.

Research on cryptographic accelerators has been shown
to increase performance and security features faster,
especially in AES, SHA, and lightweight encryption
cores.[282 Qver the macro scale, architectures pipe-
lined high-throughput, bit-sliced, and reconfigurable
crypto engines are common in secure loT platforms and
embedded controllers. Enhancing the connection with
neural-processing units is becoming more significant to
defense, automotive, and industrial systems that need
authenticated or encrypted inference pipelines.

Architectural optimization in machine learning has
been considered to enhance VLSI design automation.
Neural architecture search, design exploration through
reinforcement learning, and performance-directed
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optimization have also been used to design highly effi-
cient accelerators that are workload-specific.[>*"3"1 The
approaches also increase the efficiency of energy, work-
load flexibility, and cross-domain.

Also, real-time cyber-physical systems are more and
more demanding hardware capable of supporting both
neural inference and secure DSP functionality at low
power. New architectures are looking into multilevel
memory hierarchies, on-chip encryptors, and data-
flow-based models of computation.['®?% Nonetheless,
there is little literature on detailed designs, which
closely combine neural, DSP, and cryptographic process-
ing into a single, efficient VLSI accelerator.

METHODOLOGY

The accelerator is based on neural-processing pipelines,
DSP subsystems, and cryptography cores integrated into
a single VLSI architecture optimized to work with real-
time workloads. This part will detail the architecture,
neural/DSP/ crypto design modules, and the reinforce-
ment-learning-based optimization engine that will lead
to energy-efficiency development of hardware.

Accelerator Architecture Overview

This common architecture is built on a heterogenous
array of systolic processor engines using a single com-
mon accelerator array based on a range of systolic ten-
sor engines, DSP arithmetic units, reconfigurable crypto
cores, and a multitier hierarchy of memory. The acceler-
ator has three execution modes—neural inference, DSP
computation, and cryptographic processing determined

Host CPU / SoC
Neural Tensor

Array Systolic
Engines

—

Multi-Mode
Controller

-

Crypto
Cores

by a multimoded controller that reassigns resources
based on the demand of the workload. PEs are configured
in such a way to accommodate both weight-stationary
and output-stationary dataflows to allow efficient oper-
and reuse with reduced off-chip memory access.

A composite model of energy is determined as to math-
ematically define energy behavior of various modes of
operation.

Etotal = Ecomp + Emem + Eint
E = where E comp is the energy of computation, E

comp mem

is the energy of memory reads/writes, and E_ is the
energy of interconnect switching activity. The further
model of computation energy is

N,

ops

Ecomp = zalcrvdzdf’
i=1

where (i is the effective operation capacitance of oper-
ation i, ¢ is the switching probability, and f is the oper-
ating frequency.

Hierarchical memory structure with global SRAM buffer,
distributed scratchpad and PE-local registers minimizes
the average distance of data movement. The estimation
of memory power is as follows:

NBCC
Emem = z Eread,j + Ewrite,j‘
j=1

The architecture can be concluded by the following
Figure 1, which shows how the neural array of tensors,
DSP units, crypto cores, memory hierarchy, and con-
trol units interconnect. The diagram indicates how the

Off-Chip DRAM

— |

——| DSP Units —

Multi-Tier On-
Chip Memory

On-Chip
Interconnect

]

Fig. 1: High-level architecture of the unified neural-DSP-crypto VLSI accelerator
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streams of data are directed through the unified com-
pute fabric when operating in multidomain mode with
special consideration being given to the use of shared
data paths to minimize the overall hardware footprint
and energy consumption.

Shared logic block-using, configurable execution mode
combined with dataflow optimized memory structure is
the basic building block of the accelerator and allows
it to be effectively used in supporting neural-network
inference, real-time DSP applications, and encrypted
computation on the same hardware platform.

Design of Neural Processing Engine

The neural engine is also based on a scalable array of
tensors, which is optimized to low-precision arithmetic
and energy-constrained calculation. It is able to sup-
port INT4, INT8, and mixed-precision execution modes
and has sparsity-aware compute units, which are able to
bypass zero-valued weights or activations. A computa-
tion model that is aware of quantization is given as

A

X =Q(x)=round(s - x),

where s is the qualification scale parameter learnt
during calibration. The systolic convolutional calculation
done in the systolic array of tensors can be expressed as

k=1 k=1
Ymn = 2 WX
i=0 j

M»

m+i,n+j?

]
o

where w and X are discrete weights and activations.
Mixed-precision support is a dynamically chosen, lay-
er-wise reduced-precision support, which removes
compute energy in neural layers that are insensitive to
quantization noise. Input tiles and weights are stored in
local scratchpad buffers, and there are reduced DRAM
transfers. Radio frequency interconnect fabric activates
horizontally and weights vertically through the array of
tensors and cuts redundant fetches. A structured spar-
sity detector is also incorporated in the engine that
rearranges the execution path when low-density activa-
tion maps have been found and avoids the unnecessary
multiply-accumulate (MAC) operations in effect. The DSP
subsystem also has the benefit that the FIR-style DSP fil-
ters have the same computational architecture as the
convolution kernels, meaning that the same neural MAC
array is reused by the DSP subsystem when operated in
workload compatibility mode. This state of sharing in
resources is mathematically expressed by

MAC,, (k) = MAC, (k)if input stencil matches
convolution kernel.

s

The architecture uses the smallest amount of silicon,
and there is maximum compute reuse when running Al
and signal-processing applications.

DSP and Cryptographic Subsystem Integration

The DSP subsystem has FIR/IIR filtering, FFT/IFFT, and
convolution functions together with QAM/OFDM modu-
lation needed to carry out real-time processing. An esti-
mated output of FIR can be calculated as

Vil = 3 hil- x0n -1,

represented directly on the joint array of MAC to reduce
hardware redundancy. The FFT processing architecture
has a decimation in time pipelined architecture that
consists of radix-2 butterfly units that allow continuous
streaming with minimal buffering overhead.

The cryptographic subsystem is based on a combination
of AES-128/256 encryption core, hash engine with SHA-2,
and secure key gating logic. AES S-box transformations
are computed using composite-field arithmetic, making
it possible to perform substitution operations with low
latency. The rounded off procedure is presented as

C = MixColumns(ShiftRows(SubBytes(S ® K))),

where § being the state matrix and K being the round
key. Multiplier arrays and/or Lookup Tables Shared mul-
tiplier arrays and/or Lookup Tables help decrease area
overhead in DSP and freedom crypto subsystems. The
relationships in sharing resources across subsystems
are shown in Table 1, which shows how the MAC units,
shift-add blocks, and interconnect fabrics are shared to
reduce the overall silicon area and power consumption.

This integrated design also means that the DSP, Al, and
cryptographic workloads do not need their own com-
pute units; therefore, saving a lot of area-power, and
workload-specific performance is ensured.

Learning-Based Optimization Framework

An agent of reinforcement learning (RL) explores design-
space of architectural configurations automatically. The
design state vector goes as follows:

« Buffer tiling and reuse parameters

 PE clock-gating and power-gating settings
o Crypto-DSP-NN pipeline scheduling

* Memory bank activation patterns
 Dataflow configuration modes
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Table 1: Functional allocation of shared hardware resources

Subsystem Shared hardware components Technical benefit

Neural engine MAC array, local scratchpad

buffer, broadcast fabric

Reduces area by reusing compute units for convolution and matrix
operations; minimizes memory bandwidth

DSP kernel MAC array, butterfly computation Achieves high-throughput FIR/FFT execution using existing compute

units, shift-add logic lanes; improves compute reuse across signal-processing workloads

Cryptographic engine  Multiplier array, S-box lookup

tables, affine transform units

Lowers energy by leveraging PE multipliers; accelerates AES round
operations; reduces silicon duplication

System controller Shared register file, arbitration

circuitry

Ensures efficient mode switching between neural, DSP, and crypto
tasks with minimal control overhead

Memory subsystem Multi-banked SRAM, interconnect Cuts total data movement energy by enabling unified buffering and

crossbar routing across all subsystems

Design-Action ——p| Evaluation |—p Reward —| Policy or Q-Update
Selection Computation
State 4§
Extraction Next Cycle

Fig. 2: Reinforcement learning-driven optimization workflow for unified accelerator design

This reward function is a performance-sensitive opti-
mizer of architectural parameters by the agent:

R=1, S + 7, - Throughput — 7, -Latency — y, - Area,
total
where 7, are adjustable coefficients. The architectural
transitions are based on a policy m(als) revised by

V,J(0)=E[V,logz,(a,Is,)A |,
where A is the estimate of the advantage.

A summary of the optimization workflow that is based
on RL is introduced in Figure 2, which illustrates the
extraction of state, design-action choice, evaluation,
and reward propagation between optimization cycles.
The framework automatically finds configurations which
maximize throughput-per-watt and tradeoff DSP and
cryptographic performance.

Journal of VLSI circuits and systems, ISSN 2582-1458

Table 2 presents a tabulated summary of major state
variables and tunable RL parameters, which help make
the results and implementation readable.

The optimization loop that is based on learning eventu-
ally reaches those hardware designs that are better in
terms of energy efficiency, less latency as well as bet-
ter computational throughput across all the domains of
workload.

RESULTS AND DISCUSSION

The proposed single neural unified neural DSP cryp-
tographic accelerator workloads were evaluated on
performance based on the proposed workloads that
are representative of real-time embedded intelligence,
secure data processing, and signal-transform pipelines.
These are convolutional neural network (CNN) infer-
ence, FFT-based DSP functions, high-order FIR filtering,

A
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Table 2: RL optimization state variables and tunable parameters

State variable/parameter

Description

Type / Range

(Sbuf )

Buffer tiling configuration, tile size, and reuse
pattern

Discrete: {8, 16, 32, 64, 128}

(Sdf)

Selected dataflow mode (weight-stationary /
output-stationary / row-stationary)

Categorical: {WS, 0OS, RS}

(S¢)

Clock-gating granularity for PEs and banks

Discrete: {PE-level, row-level, block-level}

(S50

Power-gating activation map for subsystems

Binary matrix (subsystem enable/disable)

(Spipe) Pipeline depth configuration for DSP and crypto Integer: 1-6 stages
units

(S, cheq) NN-DSP-Crypto co-scheduling pattern Sequence-based schedule

R) Multi-objective reward calculated at step (t) Real-valued scalar

(A Ayy gy A) Energy, throughput, latency, and area weights in Real: 0-1 (normalized)
reward formulation

PPO Clip Factor Stabilizes policy update 0.1-0.3

Learning Rate Step size for actor-critic optimization (10%) - (103)

Discount Factor (1) Determines the importance of long-term returns 0.90-0.99

560

540+

520¢

Throughput (GOPS)
(8,1
o
o

.
(o)
o

460

Baseline Proposed

Configuration

Fig. 3: Throughput comparison across neural, DSP,
and crypto workloads

AES-128 encryption, and hash-based idem per idem with
sha-2. Both the baseline architecture and the proposed
design were used to perform all workloads to give com-
parative information about throughput, energy effi-
ciency, and latency properties.

The findings in Figure 3 indicate that there is continuous
throughput maximization that is evident in all domains
of processing. The neural inference throughput improved
by about 22 percent, and this was mainly attributed
to optimized tensor array and weight-stationary data-
flows, which minimize memory bottlenecks. DSP oper-
ations can be improved by 18%, which is explained by

20.0
17.5
15.0
12.5
10.0

Energy (pJ/op)

Lo
5.0
28

0.0

Proposed
Configuration

Baseline

Fig. 4: Energy efficiency analysis of unified
accelerator

the effective PE sharing as well as fewer pipeline stalls
when performing FIR and FFT tasks. Shared S-box mul-
tipliers and deep pipeline stages are beneficial to cryp-
tographic workloads, especially AES and SHA operations,
and lead to a 25% throughput improvement. The figure
shows how much the reuse of architectural structures
helps to boost the performance of cross domains with-
out causing a major growth in silicon space.

The analysis of energy consumption presented in

Figure 4 shows that the total energy-per-operation of
the design is reduced by almost 30 times compared to

Journal of VLSI circuits and systems, ISSN 2582-1458
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the traditional heterogeneous designs of accelerators.
The decrease comes as a result of a number of syner-
gistic optimizations: there is less data movement as a
result of localized scratchpad memories, resource shar-
ing across computation modes, and RL-based hardware
configuration, which chooses low-energy dataflows to
use in different workload conditions. Besides that, the
quantization-friendly neural pipeline reduces the oper-
ational bit-width in layers that can withstand a lower
level of precision, which has a direct impact on the
reduction of switching energy. In the case of DSP work-
loads, lightweight approximate computing modules can
be used to decrease the arithmetic overhead in cases
where numerical accuracy is not needed. Cryptographic
operation is based on shared multiplier arrays and low-
power affine transform hardware, with a collective
effect of reducing the unnecessary silicon consumption.

Latency improvements recorded in Figure 5 show that
the improvement is up to 28% on the workloads tested.
It is known that neural workloads experience reduced
buffering periods, better activation broadcasting plans,
and optimum systolic scheduling, reducing end-to-end
processing times. Kernels DSP kernels, specifically FIR
and FFT, have less execution latency because they have
lower inter-stage latency and fewer memory-access
stalls. Pipelined implementation and increased speed
of lookups enabled by shared hardware also result in
reduced latency of cryptographic primitives, includ-
ing AES round transformations. Figure 5 of the scatter
plot plots the latency’s scaling with the input size, and

160

T

150

T

140

Latency (ns)

130

120

T

Proposed

Baseline

Fig. 5: Latency reduction across processing modes
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it shows that the scaling of performance is compatible
with the scaling of workload with different workload
intensities.

Table 3 gives quantitative performance summaries and
compares throughput, energy consumption, and latency
of the baseline and proposed accelerators. There is an
improvement in throughput with 450 GOPS up to 560
GOPS, which is 24%. Energy use drops to 21 pJ/op to
14 pJ/op, with the main reasons being the design-space
configuration optimized by the RL and interconnect
energy. Latency goes down to 115ns compared to 160ns
of the unified hardware scheduling fabric and optimized
on-chip dataflow paths.

Figure 6 gives an in-depth visualization of the use of
processing elements (PEs) on heterogeneous workloads,
with warmer regions reflecting increased compute acti-
vation frequency on systolic over the use of tensor oper-
ations, FIR filtering, and AES rounds. The bottom subplot
shows the profile of the lower subplot, the backpressure
profile of the pipeline, which varies over time with the
stall cycles induced by memory-access contention, inter-
connect arbitration, and imbalance of the operand. A
combination of these visualizations facilitates architec-
tural bottleneck diagnosis as well as optimizes through
reinforcement learning to a better dataflow scheduling
and resource allocation.

More information on operation-based behavior is pro-
vided in Table 4, which compares the execution time
of different operations AES encryption, FIR filtering,
and CNN convolution. Optimized round transformations
and acceleration of the key schedule ensure a reduc-
tion in the AES-128 block time down to 0.31 ms. The FIR-
64 pipeline includes the advantages of using the neural
MAC arrays and fewer buffer stalls that minimizes the
execution time to 0.49 ms compared to 0.62 ms. With
the largest absolute decrease, from 1.12 ms to 0.83 ms,
quantization-aware convolution mapping and better sys-
tolic array use allow CNN convolution, which is the com-
putationally most intense, to be reduced.

An enhanced examination of the interaction of the
workload in the integrated architecture brings across a
number of significant observations. To begin with, the

Table 3: Comparative performance metrics

Metric Baseline Proposed
Throughput (GOPS) | 450 560
Energy (pJ/op) 21 14
Latency (ns) 160 115

N
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Fig. 6: Processing-element utilization heatmap and
pipeline backpressure profile across unified neural-
DSP-crypto workloads

Table 4: Crypto-DSP-neural unified execution efficiency

Operation Baseline (ms) Proposed (ms)
AES-128 block 0.45 0.31
FIR-64 stage 0.62 0.49
CNN convolution 1.12 0.83

resource sharing among the domains will greatly reduce
wastiness in idle cycles, thereby enabling the PEs to
record high utilization even with the heterogeneous
workloads. Second, the memory-hierarchy optimiza-
tion minimizes the effective latency of mode switching,
which guarantees that neural, DSP, and cryptographic
activities do not have heavy synchronization costs.
Third, reinforcement learning is an important tool for
finding architectural designs that can be generalized
across the domain boundaries. The RL engine minimizes

ss [

the energy usage and latency by automatically tuning
buffer tiling policies, gating policies, and pipeline sched-
uling to minimize energy usage and latency with tuning
parameters.

Also, Figure 6 of heat-map profiling of PE usage demon-
strates that the load distribution in tensor arrays and
DSP data paths is balanced, which proves that the shared
compute fabric does not cause any bottlenecks. The
analysis of the back pressure of the pipeline also shows
that the unified architecture has fewer stall cycles, par-
ticularly when there are concurrent stages of DSP and
neural execution. These results validate the fact that
Al, DSP, and cryptography combination into one VLSI
substrate, not only lowers power and latency, but also
improves parallelism and execution stability.

Generally, the enlarged findings demonstrate that the
common accelerator design achieves quantifiable and
strong enhancements in throughput, power efficiency,
latency, and resource utilization in various fields of com-
putations. The shared hardware, mixed-precision arith-
metic optimization, and RL-based architectural tuning
make the proposed design a very competitive architec-
ture to use in real-time, energy-constrained intelligent
systems.

CONCLUSION

This paper describes an energy-efficient, single-chip,
VLSI accelerator that can run the inference operations
of a neural network, real-time DSP programmes, and
cryptographic code-cracking loads on a single, reconfig-
urable hardware platform. The proposed architecture
will reduce redundancy of logic and greatly lower the
data-movement overhead, which are two primary factors
that drive power consumption in modern accelerators by
implementing a common set of computational resources,
multimode execution control, and hierarchical memory
organization. Its design exploits systolic tensor arrays to
perform neural models, reconfigurable arithmetic pipe-
lines to perform DSP kernels, and optimized AES/SHA
blocks to execute secure computation and connect all
of these to a shared compute fabric to exploit maximum
throughput-per-watt across a wide variety of workloads.

Quantization-sensitive processing, sparsity utilization,
and mixed-precision arithmetic further increase the
computational efficiency of the workload, allowing
the accelerator to dynamically adjust precision based
on the workload’s sensitivity. Neural compute reuse
DSP-neural compute reuse eliminates function area
tradeoffs in silicon-based functional coverage. Shared
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cryptographic data paths save silicon area, yet they do
not affect functional coverage. The architectural opti-
mization framework based on reinforcement-learning
allows exploring dataflow configurations, tiling buffer
configurations, and pipeline scheduling options in a sys-
tematic manner, rather than tuning hardware configu-
rations manually, resulting in hardware configurations
that are significantly better than their manually tuned
counterparts. Through experimental analysis, there are
uniform and significant improvements in throughput,
latency, and energy parameters confirming the perfor-
mance of the co-optimized architecture.

The findings indicate that autonomous accelerators can
be generated through Al-assisted design search and
cross-domain reuse of hardware, and can achieve real-
time performance with strict energy constraints. The
modularity of the architecture and the scalable compute
fabric have enabled it to be applicable to a wide range
of intelligent embedded applications, secure loT sys-
tems, autonomous systems, and heterogeneous compute
systems in which Al, DSP, and cryptographic functions
are often combined. It can be improved in the future by
dynamic voltage- frequency scaling with real-time pre-
diction of workload, the use of on-chip learning engines
to enable continuous adaptation, and the implementa-
tion of hardware-software co-optimized security mea-
sures to ensure the integrity of the accelerator when
running in multidomain mode. In this direction, future
developments will enhance the ability of the accelerator
to perform effectively and safely in high ability changing
computing environments.
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