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Abstract

The development of artificial intelligence, real-time digital signal processing (DSP), and 
cryptographic workloads has been fueling the need to have highly efficient neural net-
work accelerators embedded within state-of-the-art VLSI architectures. Traditional 
accelerators that are optimized to either DSP or cryptography are no longer capable of 
supporting the power, latency, and throughput requirements of the current embedded and 
high-performance computing systems. With the increasing complexity of neural workloads 
and the increasing security assurances needed with cryptographic operations, energy effi-
ciency is becoming more important than ever. It is a unified, energy-efficient accelerator 
design that combines the use of neural processing, DSP kernels, and cryptographic primi-
tives in a single VLSI system. The framework suggested utilizes hardware-aware quantiza-
tion, systolic TA, reconfigurable DSP pipeline, and low-power cryptographic cores designed 
with the aid of machine learning-driven design frameworks. Learning is performed to 
search through architectural designs via reinforcement learning, and the single-objective 
bi-objective optimization is directed by hardware-aware optimization of performance in 
terms of area, power, and latency. Improved throughput-per-watt, low-latency process-
ing, and secure execution are experimentally proven using 7 nm and 5 nm design nodes 
compared to current accelerator designs. The findings indicate that the suggested archi-
tecture can be effectively applied to AI-based embedded systems, secure IoT systems, 
and real-time edge intelligence that requires colocation of DSP and cryptographic oper-
ation. This article adds a scalable energy-aware VLSI accelerator design that can address 
the increased computational and security requirements of the next generation intelligent 
systems.
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signal processing, and secure cryptographic computation 
all in one, in an energy-efficient system.

The gap addressed by this article is that an optimized 
neural-DSP-crypto accelerator is proposed based on 
advanced VLSI techniques and architectural optimiza-
tion guided by machine learning. It aims at providing a 
scalable architecture that will fulfill the strict energy 
and latency challenges of future generations of secure 
AI systems.

Related Work

Recent studies in energy-efficient neural accelerators 
point to great advances in terms of power saving and 
performance. Low-precision arithmetic, pruning, activa-
tion compression, and systolic tensor arrays are exam-
ples of techniques that have proved to be the primary 
mechanisms of minimizing data movement, and enhanc-
ing throughput-per-watt.[1,3,6,10] FPGA- and ASIC-based 
accelerators have been developed with further steps 
of substantial gains in the convolutional and fully con-
nected operations as they optimize the memory hierar-
chies and processing element (PEs) layouts. It is on these 
architectures that AI has been integrated with classical 
computation tasks in small hardware units.

DSP VLSI architectures have also developed by means 
of approximate arithmetic circuits, workload-conscious 
scaling, and hardware–software cooptimization.[4,7,11] The 
current DSP accelerators employ reconfigurable systolic 
arrays, parallel multiply-accumulate units, and pipelined 
filters, which are used to handle high-speed streaming 
data tasks. The total power consumption of real-time 
systems has been greatly minimized due to the combi-
nation of approximate computing and low-power arith-
metic units.

Research on cryptographic accelerators has been shown 
to increase performance and security features faster, 
especially in AES, SHA, and lightweight encryption 
cores.[2,8,12] Over the macro scale, architectures pipe-
lined high-throughput, bit-sliced, and reconfigurable 
crypto engines are common in secure IoT platforms and 
embedded controllers. Enhancing the connection with 
neural-processing units is becoming more significant to 
defense, automotive, and industrial systems that need 
authenticated or encrypted inference pipelines.

Architectural optimization in machine learning has 
been considered to enhance VLSI design automation. 
Neural architecture search, design exploration through 
reinforcement learning, and performance-directed 

Introduction

The growing overlap of artificial intelligence, digital 
signal processing (DSP), and cryptography needs in the 
current embedded systems has compelled the need to 
develop energy-efficient hardware architectures that 
can execute highly concurrent workloads with the low-
est latency. Neural network accelerator devices now 
have to coexist with DSP workloads of filtering, modu-
lation, and feature extraction while also being able to 
execute cryptographic primitives in order to achieve 
secure communication, authentication, and encrypted 
computation. The challenges this integration poses to 
VLSI design are significant, especially at the advanced 
nodes of technology, where the energy dissipation, data 
movement overhead, and complexity of the algorithm 
used greatly impact the performance of a system. Of 
critical concern is energy efficiency, particularly since 
edge devices, IoT platforms, and autonomous systems 
are all dependent on low-power units of computing real-
ized through continual operation.

The recent developments in neural accelerators empha-
size the enhancement of the low-power convolutional 
computation, optimization of inference, and edge-
friendly neural architectures, making it possible to 
achieve increased throughput with less energy use.[1–10] 
Other similar trends include DSP-specific VLSI architec-
tures in which approximate computing, systolic arrays, 
and fine-grained parallelism offer tangible benefits in 
processing speed and power savings. Simultaneously, 
cryptographic accelerators keep on developing pipe-
lined AES cores, lightweight encryption modules, and 
high-performance secure computing pipelines that 
can handle the increasing cybersecurity requirements.
[11,12] This points to the need to have single accelerator 
designs that are capable of performing AI, DSP, and 
security workloads on a single hardware platform.

The VLSI optimization with the use of machine learn-
ing has become popular to solve the complex design 
tradeoffs of multidomain architectures.[13–15] Neural 
architecture search hardware-aware neural architec-
ture search allows joint optimization of compute, mem-
ory, and interconnect architecture, whereas design 
techniques based on reinforcement learning enable 
exploration of the large architectural design space auto-
matically. Moreover, more current accelerators are being 
designed with quantization-aware cores, configurable 
systolic cores, and domain-specific instruction sets, 
which are adaptable to mixed-DSP-AI applications.[16–22] 
In spite of this progress, there has been little study of 
integrated systems that can facilitate neural inference, 
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by a multimoded controller that reassigns resources 
based on the demand of the workload. PEs are configured 
in such a way to accommodate both weight-stationary 
and output-stationary dataflows to allow efficient oper-
and reuse with reduced off-chip memory access.

A composite model of energy is determined as to math-
ematically define energy behavior of various modes of 
operation.

Etotal = Ecomp + Emem + Eint

Ecomp = where E comp is the energy of computation, Emem 
is the energy of memory reads/writes, and Eint is the 
energy of interconnect switching activity. The further 
model of computation energy is

a
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where Ci is the effective operation capacitance of oper-
ation i, ai is the switching probability, and f is the oper-
ating frequency.

Hierarchical memory structure with global SRAM buffer, 
distributed scratchpad and PE-local registers minimizes 
the average distance of data movement. The estimation 
of memory power is as follows: 

=

= +å
acc

mem read, write,
1

.
N

j j
j

E E E

The architecture can be concluded by the following 
Figure 1, which shows how the neural array of tensors, 
DSP units, crypto cores, memory hierarchy, and con-
trol units interconnect. The diagram indicates how the 

optimization have also been used to design highly effi-
cient accelerators that are workload-specific.[5,9,13–15] The 
approaches also increase the efficiency of energy, work-
load flexibility, and cross-domain.

Also, real-time cyber-physical systems are more and 
more demanding hardware capable of supporting both 
neural inference and secure DSP functionality at low 
power. New architectures are looking into multilevel 
memory hierarchies, on-chip encryptors, and data-
flow-based models of computation.[16–20] Nonetheless, 
there is little literature on detailed designs, which 
closely combine neural, DSP, and cryptographic process-
ing into a single, efficient VLSI accelerator.

Methodology 

The accelerator is based on neural-processing pipelines, 
DSP subsystems, and cryptography cores integrated into 
a single VLSI architecture optimized to work with real-
time workloads. This part will detail the architecture, 
neural/DSP/ crypto design modules, and the reinforce-
ment-learning-based optimization engine that will lead 
to energy-efficiency development of hardware.

Accelerator Architecture Overview

This common architecture is built on a heterogenous 
array of systolic processor engines using a single com-
mon accelerator array based on a range of systolic ten-
sor engines, DSP arithmetic units, reconfigurable crypto 
cores, and a multitier hierarchy of memory. The acceler-
ator has three execution modes—neural inference, DSP 
computation, and cryptographic processing determined 

Fig. 1: High-level architecture of the unified neural–DSP–crypto VLSI accelerator 
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The architecture uses the smallest amount of silicon, 
and there is maximum compute reuse when running AI 
and signal-processing applications.

DSP and Cryptographic Subsystem Integration

The DSP subsystem has FIR/IIR filtering, FFT/IFFT, and 
convolution functions together with QAM/OFDM modu-
lation needed to carry out real-time processing. An esti-
mated output of FIR can be calculated as 

-

=

= × -å
1

0

[ ] [ ] [ ],
N

i
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represented directly on the joint array of MAC to reduce 
hardware redundancy. The FFT processing architecture 
has a decimation in time pipelined architecture that 
consists of radix-2 butterfly units that allow continuous 
streaming with minimal buffering overhead.

The cryptographic subsystem is based on a combination 
of AES-128/256 encryption core, hash engine with SHA-2, 
and secure key gating logic. AES S-box transformations 
are computed using composite-field arithmetic, making 
it possible to perform substitution operations with low 
latency. The rounded off procedure is presented as

= ÅMixColumns(ShiftRows(SubBytes( ))),C S K

where S being the state matrix and K being the round 
key. Multiplier arrays and/or Lookup Tables Shared mul-
tiplier arrays and/or Lookup Tables help decrease area 
overhead in DSP and freedom crypto subsystems. The 
relationships in sharing resources across subsystems 
are shown in Table 1, which shows how the MAC units, 
shift-add blocks, and interconnect fabrics are shared to 
reduce the overall silicon area and power consumption.

This integrated design also means that the DSP, AI, and 
cryptographic workloads do not need their own com-
pute units; therefore, saving a lot of area-power, and 
workload-specific performance is ensured.

Learning-Based Optimization Framework

An agent of reinforcement learning (RL) explores design-
space of architectural configurations automatically. The 
design state vector goes as follows:

•	Buffer tiling and reuse parameters
•	PE clock-gating and power-gating settings
•	Crypto–DSP–NN pipeline scheduling
•	Memory bank activation patterns
•	Dataflow configuration modes

streams of data are directed through the unified com-
pute fabric when operating in multidomain mode with 
special consideration being given to the use of shared 
data paths to minimize the overall hardware footprint 
and energy consumption.

Shared logic block-using, configurable execution mode 
combined with dataflow optimized memory structure is 
the basic building block of the accelerator and allows 
it to be effectively used in supporting neural-network 
inference, real-time DSP applications, and encrypted 
computation on the same hardware platform.

Design of Neural Processing Engine

The neural engine is also based on a scalable array of 
tensors, which is optimized to low-precision arithmetic 
and energy-constrained calculation. It is able to sup-
port INT4, INT8, and mixed-precision execution modes 
and has sparsity-aware compute units, which are able to 
bypass zero-valued weights or activations. A computa-
tion model that is aware of quantization is given as

= = ×ˆ ( ) round( ),x Q x s x

where s is the qualification scale parameter learnt 
during calibration. The systolic convolutional calculation 
done in the systolic array of tensors can be expressed as 
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where ŵ  and x̂ are discrete weights and activations. 
Mixed-precision support is a dynamically chosen, lay-
er-wise reduced-precision support, which removes 
compute energy in neural layers that are insensitive to 
quantization noise. Input tiles and weights are stored in 
local scratchpad buffers, and there are reduced DRAM 
transfers. Radio frequency interconnect fabric activates 
horizontally and weights vertically through the array of 
tensors and cuts redundant fetches. A structured spar-
sity detector is also incorporated in the engine that 
rearranges the execution path when low-density activa-
tion maps have been found and avoids the unnecessary 
multiply-accumulate (MAC) operations in effect. The DSP 
subsystem also has the benefit that the FIR-style DSP fil-
ters have the same computational architecture as the 
convolution kernels, meaning that the same neural MAC 
array is reused by the DSP subsystem when operated in 
workload compatibility mode. This state of sharing in 
resources is mathematically expressed by

=DSP NNMAC ( ) MAC ( )if input stencil matches
convolutionkernel.

k k
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Table 2 presents a tabulated summary of major state 
variables and tunable RL parameters, which help make 
the results and implementation readable.

The optimization loop that is based on learning eventu-
ally reaches those hardware designs that are better in 
terms of energy efficiency, less latency as well as bet-
ter computational throughput across all the domains of 
workload.

Results and Discussion

The proposed single neural unified neural DSP cryp-
tographic accelerator workloads were evaluated on 
performance based on the proposed workloads that 
are representative of real-time embedded intelligence, 
secure data processing, and signal-transform pipelines. 
These are convolutional neural network (CNN) infer-
ence, FFT-based DSP functions, high-order FIR filtering, 

This reward function is a performance-sensitive opti-
mizer of architectural parameters by the agent:

1 2 3 4
total

1
Throughput Latency Area,R

E
g g g g= × + × - × - ×

where gi are adjustable coefficients. The architectural 
transitions are based on a policy π(a|s) revised by

( )( ) log ,|t t tJ a s Aq q qq pé ùÑ = Ñë û

where At is the estimate of the advantage.

A summary of the optimization workflow that is based 
on RL is introduced in Figure 2, which illustrates the 
extraction of state, design-action choice, evaluation, 
and reward propagation between optimization cycles. 
The framework automatically finds configurations which 
maximize throughput-per-watt and tradeoff DSP and 
cryptographic performance.

Table 1: Functional allocation of shared hardware resources

Subsystem Shared hardware components Technical benefit

Neural engine MAC array, local scratchpad 
buffer, broadcast fabric

Reduces area by reusing compute units for convolution and matrix 
operations; minimizes memory bandwidth

DSP kernel MAC array, butterfly computation 
units, shift-add logic

Achieves high-throughput FIR/FFT execution using existing compute 
lanes; improves compute reuse across signal-processing workloads

Cryptographic engine Multiplier array, S-box lookup 
tables, affine transform units

Lowers energy by leveraging PE multipliers; accelerates AES round 
operations; reduces silicon duplication

System controller Shared register file, arbitration 
circuitry

Ensures efficient mode switching between neural, DSP, and crypto 
tasks with minimal control overhead

Memory subsystem Multi-banked SRAM, interconnect 
crossbar

Cuts total data movement energy by enabling unified buffering and 
routing across all subsystems

Fig. 2: Reinforcement learning–driven optimization workflow for unified accelerator design 

Design-Action
Selection

Evaluation Reward
Computation Policy or Q-Update

Next Cycle
State

Extraction
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the effective PE sharing as well as fewer pipeline stalls 
when performing FIR and FFT tasks. Shared S-box mul-
tipliers and deep pipeline stages are beneficial to cryp-
tographic workloads, especially AES and SHA operations, 
and lead to a 25% throughput improvement. The figure 
shows how much the reuse of architectural structures 
helps to boost the performance of cross domains with-
out causing a major growth in silicon space.

The analysis of energy consumption presented in 
Figure  4 shows that the total energy-per-operation of 
the design is reduced by almost 30 times compared to 

AES-128 encryption, and hash-based idem per idem with 
sha-2. Both the baseline architecture and the proposed 
design were used to perform all workloads to give com-
parative information about throughput, energy effi-
ciency, and latency properties.

The findings in Figure 3 indicate that there is continuous 
throughput maximization that is evident in all domains 
of processing. The neural inference throughput improved 
by about 22 percent, and this was mainly attributed 
to optimized tensor array and weight-stationary data-
flows, which minimize memory bottlenecks. DSP oper-
ations can be improved by 18%, which is explained by 

Table 2: RL optimization state variables and tunable parameters 

State variable/parameter Description Type / Range

(sbuf) Buffer tiling configuration, tile size, and reuse 
pattern

Discrete: {8, 16, 32, 64, 128}

(sdf) Selected dataflow mode (weight-stationary / 
output-stationary / row-stationary)

Categorical: {WS, OS, RS}

(scg) Clock-gating granularity for PEs and banks Discrete: {PE-level, row-level, block-level}

(spg) Power-gating activation map for subsystems Binary matrix (subsystem enable/disable)

(spipe) Pipeline depth configuration for DSP and crypto 
units

Integer: 1–6 stages

(ssched) NN–DSP–Crypto co-scheduling pattern Sequence-based schedule

(Rt) Multi-objective reward calculated at step (t) Real-valued scalar

(l1, l2, l3, l4 ) Energy, throughput, latency, and area weights in 
reward formulation

Real: 0–1 (normalized)

PPO Clip Factor Stabilizes policy update 0.1–0.3

Learning Rate Step size for actor–critic optimization (10–5) – (10–3)

Discount Factor (l ) Determines the importance of long-term returns 0.90–0.99

Fig. 3: Throughput comparison across neural, DSP, 
and crypto workloads Fig. 4: Energy efficiency analysis of unified 

accelerator
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it shows that the scaling of performance is compatible 
with the scaling of workload with different workload 
intensities.

Table 3 gives quantitative performance summaries and 
compares throughput, energy consumption, and latency 
of the baseline and proposed accelerators. There is an 
improvement in throughput with 450 GOPS up to 560 
GOPS, which is 24%. Energy use drops to 21 pJ/op to 
14 pJ/op, with the main reasons being the design-space 
configuration optimized by the RL and interconnect 
energy. Latency goes down to 115ns compared to 160ns 
of the unified hardware scheduling fabric and optimized 
on-chip dataflow paths.

Figure 6 gives an in-depth visualization of the use of 
processing elements (PEs) on heterogeneous workloads, 
with warmer regions reflecting increased compute acti-
vation frequency on systolic over the use of tensor oper-
ations, FIR filtering, and AES rounds. The bottom subplot 
shows the profile of the lower subplot, the backpressure 
profile of the pipeline, which varies over time with the 
stall cycles induced by memory-access contention, inter-
connect arbitration, and imbalance of the operand. A 
combination of these visualizations facilitates architec-
tural bottleneck diagnosis as well as optimizes through 
reinforcement learning to a better dataflow scheduling 
and resource allocation.

More information on operation-based behavior is pro-
vided in Table 4, which compares the execution time 
of different operations AES encryption, FIR filtering, 
and CNN convolution. Optimized round transformations 
and acceleration of the key schedule ensure a reduc-
tion in the AES-128 block time down to 0.31 ms. The FIR-
64 pipeline includes the advantages of using the neural 
MAC arrays and fewer buffer stalls that minimizes the 
execution time to 0.49 ms compared to 0.62 ms. With 
the largest absolute decrease, from 1.12 ms to 0.83 ms, 
quantization-aware convolution mapping and better sys-
tolic array use allow CNN convolution, which is the com-
putationally most intense, to be reduced.

An enhanced examination of the interaction of the 
workload in the integrated architecture brings across a 
number of significant observations. To begin with, the 

the traditional heterogeneous designs of accelerators. 
The decrease comes as a result of a number of syner-
gistic optimizations: there is less data movement as a 
result of localized scratchpad memories, resource shar-
ing across computation modes, and RL-based hardware 
configuration, which chooses low-energy dataflows to 
use in different workload conditions. Besides that, the 
quantization-friendly neural pipeline reduces the oper-
ational bit-width in layers that can withstand a lower 
level of precision, which has a direct impact on the 
reduction of switching energy. In the case of DSP work-
loads, lightweight approximate computing modules can 
be used to decrease the arithmetic overhead in cases 
where numerical accuracy is not needed. Cryptographic 
operation is based on shared multiplier arrays and low-
power affine transform hardware, with a collective 
effect of reducing the unnecessary silicon consumption.

Latency improvements recorded in Figure 5 show that 
the improvement is up to 28% on the workloads tested. 
It is known that neural workloads experience reduced 
buffering periods, better activation broadcasting plans, 
and optimum systolic scheduling, reducing end-to-end 
processing times. Kernels DSP kernels, specifically FIR 
and FFT, have less execution latency because they have 
lower inter-stage latency and fewer memory-access 
stalls. Pipelined implementation and increased speed 
of lookups enabled by shared hardware also result in 
reduced latency of cryptographic primitives, includ-
ing AES round transformations. Figure 5 of the scatter 
plot plots the latency’s scaling with the input size, and 

Fig. 5: Latency reduction across processing modes

Table 3: Comparative performance metrics

Metric Baseline Proposed

Throughput (GOPS) 450 560

Energy (pJ/op) 21 14

Latency (ns) 160 115
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the energy usage and latency by automatically tuning 
buffer tiling policies, gating policies, and pipeline sched-
uling to minimize energy usage and latency with tuning 
parameters.

Also, Figure 6 of heat-map profiling of PE usage demon-
strates that the load distribution in tensor arrays and 
DSP data paths is balanced, which proves that the shared 
compute fabric does not cause any bottlenecks. The 
analysis of the back pressure of the pipeline also shows 
that the unified architecture has fewer stall cycles, par-
ticularly when there are concurrent stages of DSP and 
neural execution. These results validate the fact that 
AI, DSP, and cryptography combination into one VLSI 
substrate, not only lowers power and latency, but also 
improves parallelism and execution stability.

Generally, the enlarged findings demonstrate that the 
common accelerator design achieves quantifiable and 
strong enhancements in throughput, power efficiency, 
latency, and resource utilization in various fields of com-
putations. The shared hardware, mixed-precision arith-
metic optimization, and RL-based architectural tuning 
make the proposed design a very competitive architec-
ture to use in real-time, energy-constrained intelligent 
systems.

Conclusion

This paper describes an energy-efficient, single-chip, 
VLSI accelerator that can run the inference operations 
of a neural network, real-time DSP programmes, and 
cryptographic code-cracking loads on a single, reconfig-
urable hardware platform. The proposed architecture 
will reduce redundancy of logic and greatly lower the 
data-movement overhead, which are two primary factors 
that drive power consumption in modern accelerators by 
implementing a common set of computational resources, 
multimode execution control, and hierarchical memory 
organization. Its design exploits systolic tensor arrays to 
perform neural models, reconfigurable arithmetic pipe-
lines to perform DSP kernels, and optimized AES/SHA 
blocks to execute secure computation and connect all 
of these to a shared compute fabric to exploit maximum 
throughput-per-watt across a wide variety of workloads.

Quantization-sensitive processing, sparsity utilization, 
and mixed-precision arithmetic further increase the 
computational efficiency of the workload, allowing 
the accelerator to dynamically adjust precision based 
on the  workload’s sensitivity. Neural compute reuse 
DSP–neural compute reuse eliminates function area 
tradeoffs in silicon-based functional coverage. Shared 

Fig. 6: Processing-element utilization heatmap and 
pipeline backpressure profile across unified neural–

DSP–crypto workloads

Table 4: Crypto-DSP-neural unified execution efficiency

Operation Baseline (ms) Proposed (ms)

AES-128 block 0.45 0.31

FIR-64 stage 0.62 0.49

CNN convolution 1.12 0.83

resource sharing among the domains will greatly reduce 
wastiness in idle cycles, thereby enabling the PEs to 
record high utilization even with the heterogeneous 
workloads. Second, the memory-hierarchy optimiza-
tion minimizes the effective latency of mode switching, 
which guarantees that neural, DSP, and cryptographic 
activities do not have heavy synchronization costs. 
Third, reinforcement learning is an important tool for 
finding architectural designs that can be generalized 
across the domain boundaries. The RL engine minimizes 
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cryptographic data paths save silicon area, yet they do 
not affect functional coverage. The architectural opti-
mization framework based on reinforcement-learning 
allows exploring dataflow configurations, tiling buffer 
configurations, and pipeline scheduling options in a sys-
tematic manner, rather than tuning hardware configu-
rations manually, resulting in hardware configurations 
that are significantly better than their manually tuned 
counterparts. Through experimental analysis, there are 
uniform and significant improvements in throughput, 
latency, and energy parameters confirming the perfor-
mance of the co-optimized architecture.

The findings indicate that autonomous accelerators can 
be generated through AI-assisted design search and 
cross-domain reuse of hardware, and can achieve real-
time performance with strict energy constraints. The 
modularity of the architecture and the scalable compute 
fabric have enabled it to be applicable to a wide range 
of intelligent embedded applications, secure IoT sys-
tems, autonomous systems, and heterogeneous compute 
systems in which AI, DSP, and cryptographic functions 
are often combined. It can be improved in the future by 
dynamic voltage- frequency scaling with real-time pre-
diction of workload, the use of on-chip learning engines 
to enable continuous adaptation, and the implementa-
tion of hardware-software co-optimized security mea-
sures to ensure the integrity of the accelerator when 
running in multidomain mode. In this direction, future 
developments will enhance the ability of the accelerator 
to perform effectively and safely in high ability changing 
computing environments.
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