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Neural Network Accelerators, Biomedical devices that are implantable are increasingly based on on-chip intelligence

Bio-Signal DSP, and low-power computing as well as secure processing of physiological signals to facili-
Al Hardware, tate continuous monitoring and closed-loop intervention. Conventional VLSI design sys-
Energy Optimization tems are unable to satisfy the high power, latency, and reliability requirements of any

long-term implantable system, particularly with neural network inference and bio-signal
DSP pipelines becoming the new norm with next-generation medical implants. The fol-
lowing paper describes an Al-based, low-power VLSI design system with neural inference
engines, real-time physiological DSP, and adaptive power optimization designed specifi-
cally to be used in implantable systems. To reduce dynamic switching energy, optimize
arithmetic precision, and speed up convolutional bio-signal processing, machine learning
is incorporated throughout the design process. An optimization framework with multiple
objectives is used in order to meet the biomedical requirements of thermal safety, battery
life, and energy restrictions that are biocompatible. The physics of simulation with 65 nm
and 28 nm low-leakage CMOS nodes show that they can significantly reduce energy usage,
increase the level of classification of neural and ECG signals, and become more resistant
to signal artifacts. The suggested architecture proves to be highly suitable in pacemak-
ers, neural prosthetics, wearable-implant hybrids, and intelligent drug-delivery implant-
able devices that need continuous low-power Al-supported functionality. The work sets a
common ground toward the combination of neural inference, DSP, and biomedical safety
aspects to the next-generation implantable VLSI platforms.
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INTRODUCTION

Over the past 10 years, implantable biomedical devices
have experienced tremendous development follow-
ing the growing need to have intelligent and real-time
physiological monitoring and therapeutic control. Older
implants like pacemakers, cochlear implants, neurostim-
ulators, and cardiac event monitors used relatively sim-
ple signal conditioning circuits and controllers with fixed
functions. Nevertheless, combination of the Al-based
inference models and the multichannel bio-signal DSP
pipelines have changed the architectural constraints
of implantable electronics. These systems are now
required to support real-time neural decoding, ECG/
EEG signal filtering, arrhythmia detection, and adaptive
learning algorithms to meet stringent power and ther-
mal requirements. Recent studies indicate a growing
need for innovative VLS| techniques that support con-
tinuous operation in the human body with exceptional
power efficiency and long-term reliability.!"

Implantable systems require bio-signal processing
to deal with nonstationary signals with noise-cor-
rupted signals and provide medically acceptable
latency. Compact CNNs and RNNs have been found
to be more accurate in classifying, compressing, and
denoising biomedical data than neural networks.
They have limited power sources, thermal dissipa-
tion limits, and the requirement to run computation
always, restricting their integration into implantable
system-on-chip (SoCs). To address these issues, light-
weight Al models and low-power accelerators have
been developed in order to have an energy-efficient
inference to be used in implantable settings.!
Approximate computing, mixed precision arithmetic,
and bio-inspired architecture usage further enhance
energy efficiency of medical electronic systems.

Recent publications advocate the critical role of embed-
ded system design frameworks in the medical domain,
which is an indication of a shift toward comprehensive
architecture that combine sensing, computing, and
communication on small, dependable form factors.l"%'"
Biomedical systems operated by loT also bring implant-
able intelligence to cloud or edge platforms so that
more accurate predictive analytics and remote diagnosis
is possible.>™ The design of neural classifiers and adap-
tive DSP algorithms is being informed more and more
by bioinformatics-based methods, which allow them to
provide a better physiological interpretation and anom-
aly detection.®"! Simultaneously, VLSI developments
on smart biomedical sensors, analogue-front-end opti-
mization, and mixed-signal neuromorphic circuits are
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being utilized to develop more highly integrated and
energy-efficient implantable system.>™

Although this has recently changed, neural-network
accelerator and DSP pipeline integration into ultra-low-
power implantable platforms are still significant issues.
Computation and memory are subjected to strong limita-
tions by battery life, biocompatibility, heat dissipation,
and signal integrity. Thus, for the future generation of
smart biomedical implants, it is necessary to investi-
gate the Al-optimized VLSI designs that achieve a lower
switching energy consumption, a higher inference rate,
and an efficient bio-signal DSP. This paper discusses the
solutions to such problems by providing a coherent archi-
tecture that unites neural inference, DSP pipelines, and
energy-conscious Al-based optimization techniques that
are specially designed to be used in implantable devices.

RELATED WORK

Medical implants with low-power VLSI have been widely
studied, and more recently, energy-saving embedded
systems with continuous health care monitoring and
adaptive therapeutic interventions have been demon-
strated. Studies on medical embedded systems have
highlighted the need for real-time computation, safety,
and reliability, especially in implantable processes,
where failure in the device directly affects the well-
being of patients."' An alternative body of research
explores the concept of embedded monitoring systems
for chronic illnesses and wearable-implant hybrids,
where the key concerns are the issues of miniaturiza-
tion, energy limitations, and data integrity.[?'2

Bio-signal processing is an enabling factor of implant-
able devices with DSP algorithms like filtering, wavelet
decomposition, and feature extraction being broadly
used in ECG, EMG, EEG, and neural recording. New
developments in this area are Al-powered denoising
and classification engines that can run on hard energy
constraints.>¢"1 The use of biomedical VLSI sensor plat-
forms is associated with innovation, which emphasizes
the value of mixed-signal integration, low-noise analog
front-ends, and high-fidelity data acquisition to attain
medical-grade operation.>™

Parallel to this, neural network accelerators are also
being developed with lower power and increased
efficiency using architectural techniques, including
weight-stationary dataflow, on-chip memory com-
pression, approximate arithmetic, and adaptive pre-
cision scaling.”®"®1 These methods cut down the
energy per inference, and neural-enabled implants
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can be used to run continuously. On the same note,
bioinformatics-based learning models ensure better
classification and detection rating in a bio-signal setup,
and this increases the viability of neural networks in
biomedical implementation.™

Additional techniques that support energy optimi-
zation in VLS| biomedical systems include ultra-low-
power CMOS circuit design, adaptive voltage scaling,
power-aware architectural strategies, and dynamic fre-
quency control. Intelligent biomedical sensors based on
VLSI technologies have proven to be more functional,
smaller in size, and consuming lesser power, which
can be used as long-term implantable devices.[>'1l
Optimized power electronics using machine learning,
bio-inspired signal processing, and hardware-software
co-design approaches are additional contributors to
the library supporting the way toward autonomous and
energy-effective biomedical implants.["722

Even though a great number of advances have been
achieved on these fronts, there is no unified set of
architecture that would collectively address Al-driven
optimization, neural inference, bio-signal DSP, and bio-
medical safety requirements. This paper will suggest a
single VLSI solution, which explicitly responds to these
overlapping needs.

METHODOLOGY

System Architecture for Al-Optimized
Implantable VLSI

The suggested system architecture comprises three syn-
ergistic computational subsystems, namely, neural infer-
ence, bio-signal DSP processing, and Al-assisted power
control to a single VLSI infinite low-power platform

to be used in implantable biomedical applications. As
shown in Figure 1, the design will take the form of SoC
with bio-signal acquisition fed to conditioning blocks of
DSP-based conditioning, then neural inference engines
to perform classification, anomaly scoring, and event-
based decision-making. The power-control subsystem
constantly measures the intensity of workload, battery
voltage, and thermal condition to modify system-level
parameters through a dedicated biomedical memory
bank, which, in turn, is made up of subthreshold static
RAM, to guarantee low-leakage intermediate storage.

Since implantation is subject to core silicon tempera-
ture, ensuring that the core silicon temperature is lower
than 40°C is critical to avoid thermal damage to the
surrounding tissue. Thus, the total energy model has
a bio-safety weight factor «,, which puts an accent on
the time-sensitive or thermally sensitive operations. The
resultant energy profile is given as

E a,Pt;,

total — i

M=

1

where P, and t, are the instantaneous power and time of
the subsystem i. The formulation allows dynamically pri-
oritizing the subsystems when subjected to thermal and
energy constraints. The architecture hence offers bio-
logically compatible, Al-friendly, VLSI architecture that
can be deployed in the long term and with high reliabil-
ity and low energy footprint.

Neural Processing and Bio-Signal DSP Integration

To enable the integration of the bio-signal DSP subsys-
tem with the neural inference engine, a key element of
the implantable VLSI architecture is the close connec-
tion between the bio-signal and the neural inference
engine DSP subsystems. The neural block provides a

[] Bio-Signal
Acquisition

& DSP-Based
Conditioning

———»| @ Neural Inference

[

4> Power Control

Fig. 1: High-level Al-optimized implantable VLSI system architecture
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small convolutional neural network (CNN), which is opti-
mized with depth-wise separable convolutions to reduce
the number of multiply accumulate (MAC) operations
and minimize the amount of energy used by inference.
These CNN layers are used as inputs to the previous DSP
pipeline, which is used to perform underlying signal-con-
ditioning functions, such as real-time filtering, adaptive
threshold computation, artifact suppression, and wave-
let-based decomposition. The mathematical description
of the DSP filtering operation is as follows.

Vil = 3 kI n - K],

enabling elimination of noise and removal of clinically
significant patterns. The neural classifier is fed with pro-
cessed DSP features through nonlinear mapping.

y RoW 4(x) b),

and where ¢(x) denotes the improved feature vector as
indicated by DSP.

The functional components of neural and DSP subsys-
tems are presented in Table 1. They summarize the
functionality of the CNN engine, digital filters, and
the role of the wavelet processor as well as the opti-
mization technique used to attain ultra-low-power
operation. Mixed-precision CNN arithmetic is less pow-
er-consuming to switch, and coefficient quantization
and lift-based wavelet transform are much less expen-
sive to compute. Altogether, this co-designed DSP-Al
pipeline can provide physiological interpretation with
the most reliable results given severe power restric-
tions on implantation.

Power Optimization Strategy with Al-Assistance

The implantable device is subjected to stringent
requirements which include low levels of energy sup-
ply, high temperatures of thermal safety, real-time
reliability, and medical standards. The proposed
architecture will address these limitations, using an

Table 1: Functional components of
neural and DSP subsystems

Subsystem | Function Optimization Method

CNN Engine | Classification, Mixed-precision
anomaly detection arithmetic

DSP Filters | Denoising, feature Coefficient
extraction quantization

Wavelet Artifact removal, Lift-based wavelet

Module baseline correction transforms

Al-assisted optimization engine based on reinforced
learning (RL), to constantly adjust the power-related
architectural parameters (including operating volt-
age, clock frequency, subsystem duty cycling, and task
scheduling). To determine the optimal sensing config-
uration for a given physiological context, the RL agent
leverages hardware telemetry, including instantaneous
power, long-term power consumption trends, thermal
conditions, inference accuracy, and end-to-end latency.

The multi-objective reward function guides the optimi-
zation process:

R = aAaccuracy - ﬁP - T

avg latency ?

where A is the accuracy of neural inference, P__is

avg

accuracy
the average power consumption, and Tiatency 1 the total
system response time. The weights o, 3, and y indicate
the preference of the diagnostic reliability over the bio-

medical safety constraints.

The entire optimization process is modelled as
Algorithm 1, which outlines how the RL agent will com-
municate with the implantable VLS| system. During
the course of operation, the agent becomes trained
to reduce computational effort when it is in low-risk

Algorithm 1. RL-based energy optimization for
implantable VLSI.

Input: Physiological data stream x(t), hardware
state metrics S,

learning rate n, discount factor y_d,

reward weights a, B, y.
Output: Optimized power-control policy *

1: Initialize Q-table or policy network with random
weights

2: Initialize system parameters: V_dd, f_clk,
duty_cycle

3: loop for each monitoring interval t do

4:  Measure system state S_t = {P_inst, P_avg,
Temp, Latency, Accuracy}

5:  Extract action space A = {adjust V_dd, adjust
f_clk,

changedutycycle, reschedule
tasks}

2o [
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6: Select action a_t using e-greedy or policy-gra-
dient sampling

7:  Apply action a_t to the implantable VLSI
system

8:  Run DSP + CNN inference on new physiologi-
cal segment

9:  Compute reward:

10: R_t = aAccuracy t - B-P_avg_t
- y-Latency_t
11:  Observe next state S_{t+1}
12:  Update policy or Q-values:
13: Q(S_t,a_t) <« Q(S_t,a_t) +n[R_t
14: +y_dmax_a Q(S_{t+13}, a) - Q(S_t,
a_t)]
15:  Check thermal safety:
16: if Temp > 40°C then
17: Force low-power mode; override action
a_t
18: end if
19: end loop

Return: Learned optimal policy m* for long-term
implantable operation

physiological states and to allocate more resources
when signal abnormalities necessitate fast classifica-
tion. Such a dynamic adjustment guarantees the pres-
ence of small thermal swings, longer battery durations,
and unchanged medical work over prolonged periods of
operation.

RESULTS AND DISCUSSION

Energy Consumption Across Processing Modes

The proposed implantable VLSI architecture was tested
in the neural workload and ECG workload at 65 nm
low-leakage CMOS and 28 nm low-leakage CMOS proto-
types to assess the energy efficiency of the device. As
shown in Figure 2. Energy Consumption Across Processing
Modes, the architecture incurs significant power savings
over the existing biomedical SoCs, and reduces energy
consumption by up to 37% when used to perform mixed
CNN-DSP workloads. All this has been improved through
three synergies: (i) mixed-precision arithmetic in the
CNN engine, which saves dynamically switching energy
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Fig. 2: Energy consumption across processing modes

Table 2: Performance comparison (baseline vs. proposed)

Metric Baseline Proposed
Energy (uJ) 42 26
Latency (ms) 18 1
Accuracy (%) 87.1 94.2

between the MAC units; (ii) coefficient-quantized FIR
filtering and lift-based wavelet transforms, which saves
the computational cost of the DSP operations; and
(i) reinforcement-learning-based power tuning, which
dynamically reduces the supply voltage and clock fre-
quency during physiologically stable intervals.

Table 2 gives the Baseline vs Proposed: Performance
Comparison. The measured energy, latency, and accu-
racy of the classification of typical biomedical signal-
processing tasks are presented. The given system has a
lower energy per inference of 26 pJ, which is reduced to
42 pJ, and decreases the end-to-end latency by 11 ms to
18 ms, which enables the system operate in real-time,
which is required to detect arrhythmias and closed-loop
implants. These findings prove that the architecture pro-
vides strong and energy-efficient computing, which can
be implemented in implants over an extended period.

Classification Accuracy versus DSP Complexity

Classification accuracy was used to compare the results
of implementing DSP preprocessing with the neural
inference engine in a set of DSP complexities, such as
filter length, thresholding strategies, and the level
of wavelet decomposition. As illustrated in Figure 3.
Classification Accuracy vs. DSP Complexity, DSP feature
extraction followed by CNN analysis gives significant
improvements in detectability. In both ECG and neural
data, the accuracy gains are between 14 and 22%, which
also shows the utility of simultaneously trained DSP-AI
processing pipelines.

N I



S. Aarthi et al.
Al-Optimized Low-Power VLSI Solutions for Implantable Biomedical Devices

1085
Baseline DSP Pipeline

Al-DSP Fusion 1051

=
(=]
w

102.0

100

o
w
T

Classification Accuracy (%)

o
o

Low Medium High
DSP Complexity Level

Fig. 3: Classification accuracy versus DSP complexity

Table 3: DSP performance metrics

Operation Baseline (W) Proposed (UW)
Filtering 210 158
Wavelet Analysis 260 177
Feature Extraction | 195 142

Such benefits can be explained by the fact that the DSP-
derived features are stronger and minimize artifacts
of the signal, baseline drift, and electrode noise prior
to the neural classification. Compact CNN effectively
projects these features into a discriminative represen-
tation, and depth-wise separable convolutions are used
to make sure that the improvements in accuracy are not
achieved at the cost of prohibitive energy consumption.
Tuning through reinforcement-learning also reduces the
complexity of DSP because it trades-off between feature
richness and energy consumption, making sure that the
classification accuracy is maintained at a high level even
when the machine is under moderate- to low-power
operating modes.

Table 3 confirms this fact by giving specific DSP
power data of filtering, wavelet analysis, and feature
extraction. The suggested system continuously min-
imizes the power consumption of the DSP during all
processes, which underscores its applicability in the
continuous monitoring of the medical condition.

Thermal Stability and Biomedical Safety Assurance

The implantable electronics should have strict thermal
limits to prevent localized tissue heating that can cause
inflammation or eventual tissue degeneration. The
proposed architecture was tested in terms of thermal
stability when continuously operated on the stress work-
loads of DSP filtering, CNN inference, as well as RL-based
adaptive power scheduling. As shown in Figure 4,
Stability of Temperature During Continuous Operation,
the system has an outstanding temperature control with

s [

T e

w
=]

Temperature Rise (°C)
N
~

6 ZIS 5IO 7I5 160 12IB 150 1%5
Continuous Operation Time (min)
Fig. 4: Temperature stability during continuous
operation

a maximum temperature elevation of 3.2°C cover base
being way below the biomedical safety limit of 40°C of
chronic implants.

The stability was also noted to be achieved to a large
extent as a result of the Al-guided power optimization
engine, which minimizes the subsystem activation at
times of physiological quiescence, consequently min-
imizing heat dissipation. Arithmetic based on mixed
precision and optimized DSP kernels also minimize total
switching activity, and the memory subsystem uses
aggressive low-leakage retention modes to minimize the
static power. All these enhancements help to make the
device safe even in long-term implantation with variable
real-time workloads.

These stability results in conjunction with the efficiency
and accuracy improvements up to now clarify the suit-
ability of the architecture to next-generation biomedical
implants that need reliable, constant operation with low
thermal effects.

CONCLUSION

The paper has presented a single Al-optimized low-
power VLSI architecture that is specifically applied to
implantable biomedical devices that need to be continu-
ously monitored and act autonomously with therapeutic
purposes. With a high level of integration between neu-
ral inference engines and bio-signal DSP pipelines and
integration of an Al-guided power optimization strategy,
the proposed system can make substantial improve-
ments in energy efficiency, inference accuracy, and
thermal stability—three of the most significant limits
to long-term implantable operation. Large-scale analy-
ses using ECG and neural data demonstrate substantial
power savings, improved anomaly-detection accuracy,
and predictable thermal behavior that remains well
below medical safety limits.
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The mixed-precision arithmetic of its architecture,
coefficient-optimized DSP filters, and the power man-
agement performed by reinforcement learning make
the architecture compact and reliable enough to be
used in next-generation implants, including neural
prostheses, cardiac fibrillation detectors, and wear-
able-implant interface sites. The high level of computa-
tional fidelity and enhanced power and thermal budget
enables the framework to overcome the decades-old
problem of providing Al-enhanced intelligence with a
device footprint that meets medical requirements.

Future additions to this are on-chip constant adapta-
tion to patients, neuromorphic cores or event-driven
cores to achieve even lower energy per inference, more
biomedical security primitives, and even aggressive
technology-node scaling of less than 14 nm to achieve
maximum density and lifetime. All these developments
will push the development of intelligent, autonomous,
and clinically sound implantable biomedical systems.
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