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Abstract

Biomedical devices that are implantable are increasingly based on on-chip intelligence 
and low-power computing as well as secure processing of physiological signals to facili-
tate continuous monitoring and closed-loop intervention. Conventional VLSI design sys-
tems are unable to satisfy the high power, latency, and reliability requirements of any 
long-term implantable system, particularly with neural network inference and bio-signal 
DSP pipelines becoming the new norm with next-generation medical implants. The fol-
lowing paper describes an AI-based, low-power VLSI design system with neural inference 
engines, real-time physiological DSP, and adaptive power optimization designed specifi-
cally to be used in implantable systems. To reduce dynamic switching energy, optimize 
arithmetic precision, and speed up convolutional bio-signal processing, machine learning 
is incorporated throughout the design process. An optimization framework with multiple 
objectives is used in order to meet the biomedical requirements of thermal safety, battery 
life, and energy restrictions that are biocompatible. The physics of simulation with 65 nm 
and 28 nm low-leakage CMOS nodes show that they can significantly reduce energy usage, 
increase the level of classification of neural and ECG signals, and become more resistant 
to signal artifacts. The suggested architecture proves to be highly suitable in pacemak-
ers, neural prosthetics, wearable-implant hybrids, and intelligent drug-delivery implant-
able devices that need continuous low-power AI-supported functionality. The work sets a 
common ground toward the combination of neural inference, DSP, and biomedical safety 
aspects to the next-generation implantable VLSI platforms.
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being utilized to develop more highly integrated and 
energy-efficient implantable system.[5,14]

Although this has recently changed, neural-network 
accelerator and DSP pipeline integration into ultra-low-
power implantable platforms are still significant issues. 
Computation and memory are subjected to strong limita-
tions by battery life, biocompatibility, heat dissipation, 
and signal integrity. Thus, for the future generation of 
smart biomedical implants, it is necessary to investi-
gate the AI-optimized VLSI designs that achieve a lower 
switching energy consumption, a higher inference rate, 
and an efficient bio-signal DSP. This paper discusses the 
solutions to such problems by providing a coherent archi-
tecture that unites neural inference, DSP pipelines, and 
energy-conscious AI-based optimization techniques that 
are specially designed to be used in implantable devices.

Related Work

Medical implants with low-power VLSI have been widely 
studied, and more recently, energy-saving embedded 
systems with continuous health care monitoring and 
adaptive therapeutic interventions have been demon-
strated. Studies on medical embedded systems have 
highlighted the need for real-time computation, safety, 
and reliability, especially in implantable processes, 
where failure in the device directly affects the well-
being of patients.[1,11] An alternative body of research 
explores the concept of embedded monitoring systems 
for chronic illnesses and wearable-implant hybrids, 
where the key concerns are the issues of miniaturiza-
tion, energy limitations, and data integrity.[2,12]

Bio-signal processing is an enabling factor of implant-
able devices with DSP algorithms like filtering, wavelet 
decomposition, and feature extraction being broadly 
used in ECG, EMG, EEG, and neural recording. New 
developments in this area are AI-powered denoising 
and classification engines that can run on hard energy 
constraints.[3,6,13] The use of biomedical VLSI sensor plat-
forms is associated with innovation, which emphasizes 
the value of mixed-signal integration, low-noise analog 
front-ends, and high-fidelity data acquisition to attain 
medical-grade operation.[5,14]

Parallel to this, neural network accelerators are also 
being developed with lower power and increased 
efficiency using architectural techniques, including 
weight-stationary dataflow, on-chip memory com-
pression, approximate arithmetic, and adaptive pre-
cision scaling.[7–10,15] These methods cut down the 
energy per inference, and neural-enabled implants 

Introduction

Over the past 10 years, implantable biomedical devices 
have experienced tremendous development follow-
ing the growing need to have intelligent and real-time 
physiological monitoring and therapeutic control. Older 
implants like pacemakers, cochlear implants, neurostim-
ulators, and cardiac event monitors used relatively sim-
ple signal conditioning circuits and controllers with fixed 
functions. Nevertheless, combination of the AI-based 
inference models and the multichannel bio-signal DSP 
pipelines have changed the architectural constraints 
of implantable electronics. These systems are now 
required to support real-time neural decoding, ECG/
EEG signal filtering, arrhythmia detection, and adaptive 
learning algorithms to meet stringent power and ther-
mal requirements. Recent studies indicate a growing 
need for innovative VLSI techniques that support con-
tinuous operation in the human body with exceptional 
power efficiency and long-term reliability.[1–5]

Implantable systems require bio-signal processing 
to deal with nonstationary signals with noise-cor-
rupted signals and provide medically acceptable 
latency. Compact CNNs and RNNs have been found 
to be more accurate in classifying, compressing, and 
denoising biomedical data than neural networks. 
They have limited power sources, thermal dissipa-
tion limits, and the requirement to run computation 
always, restricting their integration into implantable 
system-on-chip (SoCs). To address these issues, light-
weight AI models and low-power accelerators have 
been developed in order to have an energy-efficient 
inference to be used in implantable settings.[6–10] 
Approximate computing, mixed precision arithmetic, 
and bio-inspired architecture usage further enhance 
energy efficiency of medical electronic systems.

Recent publications advocate the critical role of embed-
ded system design frameworks in the medical domain, 
which is an indication of a shift toward comprehensive 
architecture that combine sensing, computing, and 
communication on small, dependable form factors.[1,2,11] 
Biomedical systems operated by IoT also bring implant-
able intelligence to cloud or edge platforms so that 
more accurate predictive analytics and remote diagnosis 
is possible.[3,12] The design of neural classifiers and adap-
tive DSP algorithms is being informed more and more 
by bioinformatics-based methods, which allow them to 
provide a better physiological interpretation and anom-
aly detection.[4,13] Simultaneously, VLSI developments 
on smart biomedical sensors, analogue-front-end opti-
mization, and mixed-signal neuromorphic circuits are 
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to be used in implantable biomedical applications. As 
shown in Figure 1, the design will take the form of SoC 
with bio-signal acquisition fed to conditioning blocks of 
DSP-based conditioning, then neural inference engines 
to perform classification, anomaly scoring, and event-
based decision-making. The power-control subsystem 
constantly measures the intensity of workload, battery 
voltage, and thermal condition to modify system-level 
parameters through a dedicated biomedical memory 
bank, which, in turn, is made up of subthreshold static 
RAM, to guarantee low-leakage intermediate storage.

Since implantation is subject to core silicon tempera-
ture, ensuring that the core silicon temperature is lower 
than 40°C is critical to avoid thermal damage to the 
surrounding tissue. Thus, the total energy model has 
a bio-safety weight factor ai, which puts an accent on 
the time-sensitive or thermally sensitive operations. The 
resultant energy profile is given as

a
=

= åtotal
1

,
N

i i i
i

E Pt

where Pi and ti are the instantaneous power and time of 
the subsystem i. The formulation allows dynamically pri-
oritizing the subsystems when subjected to thermal and 
energy constraints. The architecture hence offers bio-
logically compatible, AI-friendly, VLSI architecture that 
can be deployed in the long term and with high reliabil-
ity and low energy footprint. 

Neural Processing and Bio-Signal DSP Integration

To enable the integration of the bio-signal DSP subsys-
tem with the neural inference engine, a key element of 
the implantable VLSI architecture is the close connec-
tion between the bio-signal and the neural inference 
engine DSP subsystems. The neural block provides a 

can be used to run continuously. On the same note, 
bioinformatics-based learning models ensure better 
classification and detection rating in a bio-signal setup, 
and this increases the viability of neural networks in 
biomedical implementation.[4]

Additional techniques that support energy optimi-
zation in VLSI biomedical systems include ultra-low-
power CMOS circuit design, adaptive voltage scaling, 
power-aware architectural strategies, and dynamic fre-
quency control. Intelligent biomedical sensors based on 
VLSI technologies have proven to be more functional, 
smaller in size, and consuming lesser power, which 
can be used as long-term implantable devices.[5,14,16] 
Optimized power electronics using machine learning, 
bio-inspired signal processing, and hardware–software 
co-design approaches are additional contributors to 
the library supporting the way toward autonomous and 
energy-effective biomedical implants.[17–22]

Even though a great number of advances have been 
achieved on these fronts, there is no unified set of 
architecture that would collectively address AI-driven 
optimization, neural inference, bio-signal DSP, and bio-
medical safety requirements. This paper will suggest a 
single VLSI solution, which explicitly responds to these 
overlapping needs.

Methodology 

System Architecture for AI-Optimized 
Implantable VLSI 

The suggested system architecture comprises three syn-
ergistic computational subsystems, namely, neural infer-
ence, bio-signal DSP processing, and AI-assisted power 
control to a single VLSI infinite low-power platform 

Fig. 1: High-level AI-optimized implantable VLSI system architecture
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small convolutional neural network (CNN), which is opti-
mized with depth-wise separable convolutions to reduce 
the number of multiply accumulate (MAC) operations 
and minimize the amount of energy used by inference. 
These CNN layers are used as inputs to the previous DSP 
pipeline, which is used to perform underlying signal-con-
ditioning functions, such as real-time filtering, adaptive 
threshold computation, artifact suppression, and wave-
let-based decomposition. The mathematical description 
of the DSP filtering operation is as follows.

-
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enabling elimination of noise and removal of clinically 
significant patterns. The neural classifier is fed with pro-
cessed DSP features through nonlinear mapping.

s fÀˆ ( ( ) ),y W x b

and where ϕ(x) denotes the improved feature vector as 
indicated by DSP.

The functional components of neural and DSP subsys-
tems are presented in Table 1. They summarize the 
functionality of the CNN engine, digital filters, and 
the role of the wavelet processor as well as the opti-
mization technique used to attain ultra-low-power 
operation. Mixed-precision CNN arithmetic is less pow-
er-consuming to switch, and coefficient quantization 
and lift-based wavelet transform are much less expen-
sive to compute. Altogether, this co-designed DSP-AI 
pipeline can provide physiological interpretation with 
the most reliable results given severe power restric-
tions on implantation.

Power Optimization Strategy with AI-Assistance 

The implantable device is subjected to stringent 
requirements which include low levels of energy sup-
ply, high temperatures of thermal safety, real-time 
reliability, and medical standards. The proposed 
architecture will address these limitations, using an 

Algorithm 1. RL-based energy optimization for 
implantable VLSI.

Input: Physiological data stream x(t), hardware 
state metrics S,

       learning rate η, discount factor γ_d,

       reward weights α, β, γ.

Output: Optimized power-control policy π*

1: �Initialize Q-table or policy network with random 
weights

2: �Initialize system parameters: V_dd, f_clk, 
duty_cycle

3: loop for each monitoring interval t do

4:     �Measure system state S_t = {P_inst, P_avg, 
Temp, Latency, Accuracy}

5:     �Extract action space A = {adjust V_dd, adjust 
f_clk,

                                 �change duty cycle, reschedule 
tasks}

Table 1: Functional components of 
neural and DSP subsystems

Subsystem Function Optimization Method

CNN Engine Classification, 
anomaly detection

Mixed-precision 
arithmetic

DSP Filters Denoising, feature 
extraction

Coefficient 
quantization

Wavelet 
Module

Artifact removal, 
baseline correction

Lift-based wavelet 
transforms

AI-assisted optimization engine based on reinforced 
learning (RL), to constantly adjust the power-related 
architectural parameters (including operating volt-
age, clock frequency, subsystem duty cycling, and task 
scheduling). To determine the optimal sensing config-
uration for a given physiological context, the RL agent 
leverages hardware telemetry, including instantaneous 
power, long-term power consumption trends, thermal 
conditions, inference accuracy, and end-to-end latency.

The multi-objective reward function guides the optimi-
zation process:

a b g= - -accuracy avg latency ,R A P T

where Aaccuracy is the accuracy of neural inference, Pavg is 
the average power consumption, and Tlatency is the total 
system response time. The weights a, b, and g indicate 
the preference of the diagnostic reliability over the bio-
medical safety constraints.

The entire optimization process is modelled as 
Algorithm 1, which outlines how the RL agent will com-
municate with the implantable VLSI system. During 
the course of operation, the agent becomes trained 
to reduce computational effort when it is in low-risk 
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between the MAC units; (ii) coefficient-quantized FIR 
filtering and lift-based wavelet transforms, which saves 
the computational cost of the DSP operations; and 
(iii)  reinforcement-learning-based power tuning, which 
dynamically reduces the supply voltage and clock fre-
quency during physiologically stable intervals.

Table 2 gives the Baseline vs Proposed: Performance 
Comparison. The measured energy, latency, and accu-
racy of the classification of typical biomedical signal–
processing tasks are presented. The given system has a 
lower energy per inference of 26 µJ, which is reduced to 
42 µJ, and decreases the end-to-end latency by 11 ms to 
18 ms, which enables the system operate in real-time, 
which is required to detect arrhythmias and closed-loop 
implants. These findings prove that the architecture pro-
vides strong and energy-efficient computing, which can 
be implemented in implants over an extended period.

Classification Accuracy versus DSP Complexity

Classification accuracy was used to compare the results 
of implementing DSP preprocessing with the neural 
inference engine in a set of DSP complexities, such as 
filter length, thresholding strategies, and the level 
of wavelet decomposition. As illustrated in Figure 3. 
Classification Accuracy vs. DSP Complexity, DSP feature 
extraction followed by CNN analysis gives significant 
improvements in detectability. In both ECG and neural 
data, the accuracy gains are between 14 and 22%, which 
also shows the utility of simultaneously trained DSP–AI 
processing pipelines.

physiological states and to allocate more resources 
when signal abnormalities necessitate fast classifica-
tion. Such a dynamic adjustment guarantees the pres-
ence of small thermal swings, longer battery durations, 
and unchanged medical work over prolonged periods of 
operation.

Results and Discussion

Energy Consumption Across Processing Modes

The proposed implantable VLSI architecture was tested 
in the neural workload and ECG workload at 65 nm 
low-leakage CMOS and 28 nm low-leakage CMOS proto-
types to assess the energy efficiency of the device. As 
shown in Figure 2. Energy Consumption Across Processing 
Modes, the architecture incurs significant power savings 
over the existing biomedical SoCs, and reduces energy 
consumption by up to 37% when used to perform mixed 
CNN-DSP workloads. All this has been improved through 
three synergies: (i) mixed-precision arithmetic in the 
CNN engine, which saves dynamically switching energy 

Fig. 2: Energy consumption across processing modes

Table 2: Performance comparison (baseline vs. proposed)

Metric Baseline Proposed

Energy (µJ) 42 26

Latency (ms) 18 11

Accuracy (%) 87.1 94.2

6:     �Select action a_t using ε-greedy or policy-gra-
dient sampling

7:     �Apply action a_t to the implantable VLSI 
system

8:     �Run DSP + CNN inference on new physiologi-
cal segment

9:     Compute reward:

10:         �R_t = α·Accuracy_t − β·P_avg_t 
− γ·Latency_t

11:     Observe next state S_{t+1}

12:     Update policy or Q-values:

13:         Q(S_t, a_t) ← Q(S_t, a_t) + η [ R_t

14:                     �+ γ_d max_a Q(S_{t+1}, a) − Q(S_t, 
a_t) ]

15:     Check thermal safety:

16:         if Temp > 40°C then

17:             �Force low-power mode; override action 
a_t

18:         end if

19: end loop

Return: Learned optimal policy π* for long-term 
implantable operation
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a maximum temperature elevation of 3.2°C cover base 
being way below the biomedical safety limit of 40°C of 
chronic implants.

The stability was also noted to be achieved to a large 
extent as a result of the AI-guided power optimization 
engine, which minimizes the subsystem activation at 
times of physiological quiescence, consequently min-
imizing heat dissipation. Arithmetic based on mixed 
precision and optimized DSP kernels also minimize total 
switching activity, and the memory subsystem uses 
aggressive low-leakage retention modes to minimize the 
static power. All these enhancements help to make the 
device safe even in long-term implantation with variable 
real-time workloads.

These stability results in conjunction with the efficiency 
and accuracy improvements up to now clarify the suit-
ability of the architecture to next-generation biomedical 
implants that need reliable, constant operation with low 
thermal effects.

Conclusion

The paper has presented a single AI-optimized low-
power VLSI architecture that is specifically applied to 
implantable biomedical devices that need to be continu-
ously monitored and act autonomously with therapeutic 
purposes. With a high level of integration between neu-
ral inference engines and bio-signal DSP pipelines and 
integration of an AI-guided power optimization strategy, 
the proposed system can make substantial improve-
ments in energy efficiency, inference accuracy, and 
thermal stability—three of the most significant limits 
to long-term implantable operation. Large-scale analy-
ses using ECG and neural data demonstrate substantial 
power savings, improved anomaly-detection accuracy, 
and predictable thermal behavior that remains well 
below medical safety limits.

Such benefits can be explained by the fact that the DSP-
derived features are stronger and minimize artifacts 
of the signal, baseline drift, and electrode noise prior 
to the neural classification. Compact CNN effectively 
projects these features into a discriminative represen-
tation, and depth-wise separable convolutions are used 
to make sure that the improvements in accuracy are not 
achieved at the cost of prohibitive energy consumption. 
Tuning through reinforcement-learning also reduces the 
complexity of DSP because it trades-off between feature 
richness and energy consumption, making sure that the 
classification accuracy is maintained at a high level even 
when the machine is under moderate- to  low-power 
operating modes. 

Table 3 confirms this fact by giving specific DSP 
power data of filtering, wavelet analysis, and feature 
extraction. The suggested system continuously min-
imizes the power consumption of the DSP during all 
processes, which underscores its applicability in the 
continuous monitoring of the medical condition.

Thermal Stability and Biomedical Safety Assurance

The implantable electronics should have strict thermal 
limits to prevent localized tissue heating that can cause 
inflammation or eventual tissue degeneration. The 
proposed architecture was tested in terms of thermal 
stability when continuously operated on the stress work-
loads of DSP filtering, CNN inference, as well as RL-based 
adaptive power scheduling. As shown in Figure 4, 
Stability of Temperature During Continuous Operation, 
the system has an outstanding temperature control with 

Fig. 4: Temperature stability during continuous 
operation

Fig. 3: Classification accuracy versus DSP complexity

Table 3: DSP performance metrics

Operation Baseline (µW) Proposed (µW)

Filtering 210 158

Wavelet Analysis 260 177

Feature Extraction 195 142
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9.	 Frey, S., Guermandi, M., Benatti, S., Kartsch, V., 
Cossettini, A., & Benini, L. (2023, July). BioGAP: a 10-core 
FP-capable ultra-low power IoT processor, with medi-
cal-grade AFE and BLE connectivity for wearable biosig-
nal processing. In 2023 IEEE International Conference on 
Omni-layer Intelligent Systems (COINS) (pp. 1–7). IEEE.

10.	 Guo, L., Weiße, A., Zeinolabedin, S. M. A., Schüffny, 
F. M., Stolba, M., Ma, Q., ... & Mayr, C. (2024). 68-Channel 
highly integrated neural signal processing PSoC with 
on-chip feature extraction, compression, and hardware 
accelerators for neuroprosthetics in 22nm FDSOI. arXiv 
preprint arXiv:2407.09166.

11.	 Isik, M., Vishwamith, H., Sur, Y., Inadagbo, K., & Dikmen, 
I. C. (2024, March). Neurosec: FPGA-based neuromorphic 
audio security. In International Symposium on Applied 
Reconfigurable Computing (pp. 134–147). Cham: Springer 
Nature Switzerland.

12.	 Zhao, P., Li, X., Luo, Z., Zhai, Q., Tian, Y., Zhang, K., & 
Guo, H. (2024). A bio-inspired drag reduction method of 
bionic fish skin mucus structure.  Micromachines,  15(3), 
364.

13.	 Kavitha, M. (2024). Environmental monitoring using IoT-
based wireless sensor networks: a case study. Journal of 
Wireless Sensor Networks and IoT, 1(1), 50–55. https://
doi.org/10.31838/WSNIOT/01.01.08

14.	 Kumar, T. M. S. (2024). Integrative approaches in bioin-
formatics: enhancing data analysis and interpretation. 
Innovative Reviews in Engineering and Science, 1(1), 
30–33. https://doi.org/10.31838/INES/01.01.07

15.	 Madugalla, A. K., & Perera, M. (2024). Innovative uses 
of medical embedded systems in healthcare. Progress in 
Electronics and Communication Engineering, 2(1), 48–59. 
https://doi.org/10.31838/PECE/02.01.05

16.	 Oh, S., Jekal, J., Liu, J., et al. Bioelectronic Implantable 
Devices for Physiological Signal Recording and Closed‐
Loop Neuromodulation. Advanced Functional Materials, 
34(41), 2403562. https://doi.org/10.1002/adhm.202302341

17.	 Sen, O., Ogbogu, C., Dehghanzadeh, P., Rao Doppa, J., 
Bhunia, S., Pande, P. P., & Chatterjee, B. (2024). Scalable 
and programmable look-up table based neural accel-
eration (LUT-NA) for extreme energy efficiency. arXiv 
e-prints, arXiv-2406.

18.	 Shaeri, M., Liu, J., & Shoaran, M. (2025). Machine-
learning-powered neural interfaces for smart prosthetics 
and diagnostics. arXiv preprint arXiv:2505.02516.

19.	 Shankar, S., Pan, Y., Jiang, H., Liu, Z., Darbandi, M. R., 
Lorenzo, A., ... & Liu, T. (2025). Bridging brains and 
machines: a unified frontier in neuroscience, artificial 
intelligence, and neuromorphic systems. arXiv preprint 
arXiv:2507.10722.

20.	 Sio, A. (2025). Integration of embedded systems in health-
care monitoring: challenges and opportunities. SCCTS 
Journal of Embedded Systems Design and Applications, 
2(2), 9–20.

21.	 Zhang, J., Cao, Y., Ren, R., Sui, W., Zhang, Y., Zhang, M., 
& Zhang, C. (2024). Medium‐dose formoterol attenuated 
abdominal aortic aneurysm induced by EPO via β2AR/
cAMP/SIRT1 pathway. Advanced Science, 11(15), 2306232.

22.	 Kesufekad Metachew. (2025). Energy-efficient IoT sen-
sor networks using LoRaWAN and edge intelligence. 
Journal of Scalable Data Engineering and Intelligent 
Computing, 2(1), 8–14.

The mixed-precision arithmetic of its architecture, 
coefficient-optimized DSP filters, and the power man-
agement performed by reinforcement learning make 
the architecture compact and reliable enough to be 
used in next-generation implants, including neural 
prostheses, cardiac fibrillation detectors, and wear-
able-implant interface sites. The high level of computa-
tional fidelity and enhanced power and thermal budget 
enables the framework to overcome the decades-old 
problem of providing AI-enhanced intelligence with a 
device footprint that meets medical requirements.

Future additions to this are on-chip constant adapta-
tion to patients, neuromorphic cores or event-driven 
cores to achieve even lower energy per inference, more 
biomedical security primitives, and even aggressive 
technology-node scaling of less than 14 nm to achieve 
maximum density and lifetime. All these developments 
will push the development of intelligent, autonomous, 
and clinically sound implantable biomedical systems.
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