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Abstract

The growing need for high-throughput bioinformatics computation and the strict data pri-
vacy demands have further triggered the need to have hardware accelerators with both 
sophisticated processing and in-built cryptographic protection. The given paper intro-
duces a machine learning–aided automated VLSI design system that should be used to 
create next-generation bioinformatics accelerators with embedded security primitives. 
The suggested approach capitalizes on the design-space exploration based on the learn-
ing approach, adaptive hardware synthesis, and on-board encryption to facilitate genomic 
alignment, protein structure modelling, and multiomics signal analysis. Reinforcement 
learning (RL) and trained prediction models are auto-generated architectural choices 
that can be used to optimize datapaths, memory subsystems, and cryptographic blocks. 
Lightweight AES, hash, and embedded PUF authentication units are used to guarantee con-
fidentiality and integrity in biomedical processes where compliance with regulation is par-
amount. The given framework would be beneficial to both the edge- and cloud-connected 
biomedical system because it allows for increasing design scalability and decreasing the 
amount of manual engineering overhead. The experimental tests show that it is more 
efficient in design, has less power consumption, and is more efficient in computational 
throughput than traditional VLSI techniques. This is further enhanced by the fact that the 
ML-directed optimization further minimizes development cycles and guarantees security–
performance balance of various bioinformatics kernels. This work introduces a single 
design paradigm, which is a unification of automated VLSI synthesis, machine intelligence, 
and cryptographic protection of secure biomedical hardware acceleration.
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architectural design, floorplan optimization, and logic 
synthesis, while simultaneously accelerating time-to-
silicon and reducing engineering costs.[1,5,9] Research 
observations underscore the use of ML to conduct explo-
ration on datapath construction and memory hierarchy 
design that is essential in bioinformatics kernels that 
require enormous parallelism on large datasets[12,13,18] 
The application of RL strategies has been used to opti-
mize hardware configurations in a dynamical manner 
and have exhibited better adaptability to changes in 
workload.[11,20,21]

The bioinformatics accelerators have developed out of 
the generic SIMD platforms into domain-specific VLSI 
implementations that can perform alignment, clustering, 
and molecular computation. Such accelerators demand 
a high level of co-location of signal-processing units, 
pattern-matching units, and arithmetic datapaths, the 
performance of which is highly sensitive to ML-derived 
configuration rules.[6,7,10] Meanwhile, the literature of 
embedded systems documents significant improvement 
in the secure hardware design, cryptographic primitives, 
and authentication schemes with respect to critical 
applications that demand the safeguarding of the tam-
per and secure data transmissions.[3,8,14,16]

Reconfigurable hardware security studies, IoT biomed-
ical systems, and secure embedded systems also high-
light the importance of securing hardware on processing 
medical and bioinformatics datasets.[2,4,15] Moreover, 
according to AI hardware accelerator studies, co-op-
timization based on ML can be used to simultaneously 
increase the efficiency of computations and security 
resilience.[17,19] All these preceding papers encourage the 
adoption of ML automation and cryptography to protect 
bioinformatics hardware, which forms the basis of the 
methodology in this paper.

Methodology

ML-Assisted VLSI Design-Space Exploration

The suggested automated design framework consists of 
a combination of the supervised learning and RL, which 
provides efficient exploration of the multidimensional 
VLSI design space of a secure bioinformatics accelerator. 
The architectural and micro-architectural parameters 
comprise the design space, including datapath width, 
pipeline depth, memory hierarchy partitioning, clock 
frequency targets, and cryptographic module configura-
tion. The design points of each candidate are defined 
by a feature vector which models these parameters, 
and they are assessed in terms of power (P), area (A), 

Introduction

Genome sequencing, molecular dynamics, and mul-
tiomics analytic applications are some of the bioinfor-
matical applications that are increasingly dependent on 
high-performance accelerators able to manage large-
scale and heterogeneous calculational pipelines. The 
conventional VLSI design approaches have difficulty 
satisfying the conflicting requirements of throughput, 
privacy, and flexibility needed in the biomedical envi-
ronment. Optimized architecture synthesis, logic syn-
thesis, buffer assignment, datapath scheduling, and 
cryptographic integration have seen a revolutionary 
change in their paradigms using machine learning–
assisted automation.[1–21] The presence of automated 
VLSI tools and the ML-driven optimization allows the 
designers to achieve both high efficiency and powerful 
data protection at the same time.

The bioinformatics operations produce sensitive, 
patient-related information that requires hardware 
security modules. The high rate of development of dis-
tributed biomedical systems, remote diagnostics, and 
portable sequencing devices only increases the neces-
sity of secure accelerators. Cryptography such as the 
AES-based data confidentiality, secure hash primitives, 
and device-specific authentication are being imple-
mented more prominently within the accelerators that 
are performed to realize sequence alignment or muta-
tion detection tasks.[4,7,15,19,22] Machine learning models 
improve this process by learning optimal cryptographic 
parameters, predicting architectural parameters and 
exploration of design space to balance energy, perfor-
mance, and silicon cost.[2,6,10]

The current research on VLSI security, embedded cryp-
tographic hardware, and ML-driven synthesis indicates 
that it is possible to integrate hardware automation 
with secure computation in biomedical systems.[3,8,14,17,23] 
Nevertheless, there are a small number of studies where 
such capabilities have been incorporated specifically 
in the case of bioinformatics accelerators. This void is 
filled in this paper by offering an integrated ML-aided 
VLSI design process with embedded cryptographic secu-
rity units. The framework is confined and regulation-
ally compliant in addition to facilitating a large amount 
of computation required to support next-generation 
genomic and proteomic pipelines.

Related Work

Machine learning–assisted VLSI automation has 
been shown to enhance the predictive accuracy of 
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analysis backend that generates the P, A, and D metrics, 
and (iii) the ML/RL engine that learns to select the best 
configurations. The loop is repeated until the RL agent 
reaches the policy that represents the stable identifi-
cation of architecture with good trade-offs. Practically, 
this methodology will minimize the full synthesis exe-
cutions and lower design closure time, at the same 
time integrating security-awareness in the design-space 
exploration.

Bioinformatics Accelerator Architecture with 
Embedded Security

The secure bioinformatic accelerator is optimized to 
execute tasks like genomic sequence alignment as well 
as protein scoring, which are overwhelmed by repetitive 
comparison, scoring, and integrity checking tasks. The 
architecture takes the form of a modular design con-
sisting of systolic alignment engine, a vector processing 
array, a hash/signature unit, and a memory subsystem. 
All these modules are closely combined with inbuilt 
cryptographic and reliability capabilities to ensure that 
the data-in-motion and data-at-rest are secure through-
out the processing.

Table 1, Core Modules of the Secure Bioinformatics 
Accelerator, summarizes the functional and security 
properties of the accelerator, the list of key modules, 
their key functions, and the corresponding security 
improvements. The alignment engine enables genome-
wide pattern matching with native support for encrypted 
input and output buffers, ensuring robust protection of 
sensitive biological data.

The array of the vector processor carries out parallel 
scoring and includes fault-injection resistance mecha-
nisms either in the form of redundancy cheques or light-
weight error-checking codes. Data integrity is enforced 
by a SHA-2–based hashing and signature mechanism 
that cryptographically binds results to PUF-generated 

and  delay (D), and an overall measure of security 
strength Sc.

A regression model is given supervised training to give 
an approximation of the nonlinear mapping between 
architectural parameters and physical implementation 
measures. Every training sample is obtained through 
synthesis of a candidate architecture based on stan-
dard-cell library and the extraction of post-synthesis 
estimates of power, area, and critical-path delay. The 
regression equation then predicts ˆ ˆˆ, ,ü  etc., in unseen 
configurations, greatly saving the full runs of synthesis in 
the course of exploration. The worldwide optimization 
goal is formulated as:

l l l l= + + +1 2 3 4 ,cF P A D S

where l1, l2, l3, and l4 are design values, which are 
weights that trade off power consumption, silicon area, 
timing, and security. Smaller values of F represent more 
desirable design values.

A search then is refined using an RL agent to what are 
provided by the static regression models. The environ-
ment state represents the set of present design param-
eters and the expected measures, and the actions 
represent a set of incremental adjustments, like add-
ing a depth of the pipeline of the alignment engine, 
resizing the array of vector processors, switching on or 
off certain cryptographic subblocks, or changing clock 
targets. The improvement in the objective function 
ΔF between the successive design iterations gives the 
reward function, and penalties are given when there is a 
violation of timing or area constraints.

Figure 1 represents the overall flow. The figure demon-
strates the interplay between three most important 
elements, namely, (i) a design generator that instanti-
ates candidate RTL configurations, (ii) a synthesis and 

Fig. 1: ML-assisted VLSI architecture exploration 
workflow

Table 1: Core modules of the secure 
bioinformatics accelerator

Module Function Security Feature

Alignment Engine Pattern 
matching

Encrypted I/O 
buffers

Vector Processing 
Array

Parallel scoring Fault injection 
resistance

Hash/Signature 
Unit

Data integrity SHA-2 + PUF binding

Memory Subsystem Sequence 
storage

ECC + secure regions
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identities, ensuring traceability to a unique hardware 
instance. 

Memory subsystem is where sequence data are stored 
in locations with error check code (ECC) and nonsecure 
partitioning in order to isolate high-sensitivity data.

=
+

ops
secure

core crypto

,
N

T
t t

establishes the safe throughput of the accelerator, Nops  
is the number of useful bioinformatics operations, t is 
the core time (alignment, scoring, memory access), and 
t is the extra latency of encryption, hashing, and iden-
tity binding. The goal of the ML-assisted exploration is to 
have tcore + tcrypto  minimized at a given level of security 
and Tsecure maximized.

With the combination of physical design measurements 
and this secure throughput model, the framework pro-
vides that both performance and security consciousness 
about architectural choices (memory banking, pipeline 
staging, and cryptographic module selection) are made. 
The resultant design is not just a high-performance 
accelerator but a hardware platform where confidential-
ity, integrity, as well as authenticity are implemented in 
the datapath at the register transfer level.

Automated Cryptographic Insertion Algorithm

In order to combine security systematically in the accel-
erator, an automated cryptographic insertion algorithm 
is used in the RTL design phase. Instead of tediously 
establishing encryption and hash blocks, the algorithm 
examines dataflows, locates the paths of sensitive data, 
and places suitable cryptographic modules taking into 
account timing and area constraints. The algorithm 
works together with the ML estimator and RL agent, 
forming a closed loop where the security placement 
decisions are constantly improved, depending on the 
estimated cost of implementation.

On a higher level, the algorithm starts with the pars-
ing of the RTL netlist and building of a dataflow graph 
whereby nodes are functional blocks and edges are 
data dependencies. Sensitive datapaths are identified 
via explicit design annotations or automatically inferred 
based on their connectivity to external interfaces and 
protected memory regions.

The algorithm requests the ML-based latency and power 
estimator to estimate the cost of the AES and SHA-2 or 
PUF-based components to be inserted in each sensitive 
edge.

The formalization of the decision process is presented in 
Algorithm 1.

Cryptographic blocks are automatically integrated into 
the design while ensuring compliance with the target 
performance, area, and power constraints.

Another simplified form of the algorithm is as follows:

Algorithm 1: Automated cryptographic block 
insertion.

1.	 Parse the RTL and build a dataflow graph.
2.	 Identify sensitive datapaths based on annota-

tions and connectivity.
3.	 For each sensitive path, evaluate candidate 

crypto modules (AES, SHA, PUF) using the ML 
estimator to predict added delay and power.

4.	 Select the module configuration that minimizes 
the increase in the global objective while 
meeting security requirements.

5.	 Insert the selected crypto module into the RTL 
and regenerate timing constraints.

6.	 Invoke the synthesis flow and update the mea-
sured P, A, and D metrics.

7.	 Provide the new metrics to the RL agent, 
which updates its policy and suggests subse-
quent modifications.

8.	 Repeat steps 2–7 until convergence criteria on 
and timing closure are satisfied.

With the implementation of ML estimates together with 
RL-based adjustment into the   insertion loop, naive 
over-instrumentation is avoided, in which the inclusion 
of security of all paths would become power and area 
prohibitive. Rather, it provides a balanced design where 
it strategically deploys cryptographic protection where 
needed, and without compromising the throughput or 
breaking the physical design constraints, the security 
level of Sc was raised. This automated mechanism is 
important in ensuring that the final accelerator is secure 
and implementation-efficient, and the practice also 
scales the methodology to larger or more complicated 
bioinformatics workloads.

Results and Discussion

The suggested ML-assisted VLSI design system was 
tested on a collection of bioinformatics kernels, such 
as sequence alignment, vector scoring pipelines, and 
hash-based signature verification. To be fair in the 
comparison, both secure and nonsecure accelerator 
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linear relationship, whereas powerful security attributes 
augment silicon area. The slope is moderate because of 
lightweight implementations of AES and pipelined SHA. 
This shows the scalability of the implementation of 
security in accelerators with area penalties that are not 
prohibitive in practice.

In order to supplement the graphical analysis, 
Table  2 summarizes delay, area, and power results of 
ML-optimized and manually tuned implementations. 
Machine learning–driven designs exhibit more robust 
timing closure and consistently superior PPA metrics 
across diverse workloads.

Table 2 indicates that the ML-based methodology has 
low delay, is less area-consuming, and it consumes sig-
nificantly less energy; therefore, it can better be used in 
low-power bioinformatics platforms.

Cryptographic overhead was studied specifically with 
the view of measuring the price of implementing the 
pipelines of SHA-256 and AES-GCM. Table 3 presents 
the summary of the execution time of the major cryp-
tographic operations in software- and hardware-acceler-
ated systems.

configurations were synthesized with the use of the 
same standard-cell library. The exploration framework 
based on ML is faster in design-space exploration and 
produces optimized RTL designs with reduced area-
power-delay product than the traditional manual tuning. 
The assessment shows that the ML-assisted design saves 
about 32% on the total design exploration time, mainly 
because of a reduction in the number of full synthe-
sis steps, as well as the accuracy with which physical 
parameters are predicted. In addition, the optimized 
architecture also achieves power savings of up to 18%, 
which supports the usefulness of incorporating securi-
ty-conscious and performance-conscious elements in 
the objective function.

The improvements are depicted in Figure 2, which 
shows the power consumption in various kernel config-
urations comparing the designs that are ML-tuned with 
the manually optimized baselines. As illustrated in the 
figure, ML-guided exploration always finds lower-power 
architectures that do not violate timing constraints.

Besides power analysis, throughput has been considered 
in secure and nonsecure operating modes. Figure 3 indi-
cates that less than 7% overhead is added to the base 
performance with the addition of cryptographic mod-
ules such as AES-GCM encryption, SHA-256 hashing, and 
PUF-based cheques of identities, which shows that not 
much overhead is added to the base performance when 
hardware-accelerated cryptography operations are 
switched on. The cross-sectional array scoring and align-
ment engines are designed for high throughput, leverag-
ing parallelism and pipelined datapaths throughout the 
architecture.

Scalability was also tested by trade-offs between the 
area and security strength. Figure 4 overlaid the area 
overhead versus aggregate security measure based on 
cryptographic strength, fault-injection tolerance, and 
PUF entropy. The findings demonstrate the close to 

Fig. 2: Power reduction across ML-tuned architecture

Fig. 3: Throughput comparison for secure and 
nonsecure modes

Fig. 4. Area versus security strength trade-off curve
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requirements and satisfy the security requirements of 
strict data-protection needs of the genomic and pro-
teomic workloads.

Inclusion of hardware-based security, namely, light-
weight AES-GCM encryption, SHA-2 pipelines, and 
identity binding by PUFs have ensured that data con-
fidentiality and integrity are maintained during the 
pipeline of computation. The experimental character-
ization proved that the suggested ML-guided method-
ology achieves quantifiable design productivity, power 
consumption, and competitive timing closure, and that 
might achieve cryptographic overhead at acceptable lev-
els. Also, the secure throughput model and automated 
cryptographic insertion algorithm offer a systematized 
and scalable method of implementing privacy-pro-
tecting mechanisms directly into the datapath of the 
accelerator.

The given methodology provides the basis of the future 
secure bioinformatics accelerator that is going to be 
subject to more and more performance pressure and 
more and more high expectations toward cybersecurity. 
Future developments of this work will aim at the on-chip 
continuous learning of adaptive runtime tuning, hard-
ware implementation of new sequence-analysis algo-
rithms, and neuromorphic or event-based cryptographic 
units to make further savings on energy per operation. 
Also, sub-5 nm VLSI implementation, improved PUF 
architecture, and stronger linkage to distributed ledger 
systems are promising routes to improve both security 
and processing efficiency in the next-generation bio-
medical computing systems.
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