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ABSTRACT

The growing need for high-throughput bioinformatics computation and the strict data pri-
vacy demands have further triggered the need to have hardware accelerators with both
sophisticated processing and in-built cryptographic protection. The given paper intro-
duces a machine learning-aided automated VLS| design system that should be used to
create next-generation bioinformatics accelerators with embedded security primitives.
The suggested approach capitalizes on the design-space exploration based on the learn-
ing approach, adaptive hardware synthesis, and on-board encryption to facilitate genomic
alignment, protein structure modelling, and multiomics signal analysis. Reinforcement
learning (RL) and trained prediction models are auto-generated architectural choices
that can be used to optimize datapaths, memory subsystems, and cryptographic blocks.
Lightweight AES, hash, and embedded PUF authentication units are used to guarantee con-
fidentiality and integrity in biomedical processes where compliance with regulation is par-
amount. The given framework would be beneficial to both the edge- and cloud-connected
biomedical system because it allows for increasing design scalability and decreasing the
amount of manual engineering overhead. The experimental tests show that it is more
efficient in design, has less power consumption, and is more efficient in computational
throughput than traditional VLSI techniques. This is further enhanced by the fact that the
ML-directed optimization further minimizes development cycles and guarantees security-
performance balance of various bioinformatics kernels. This work introduces a single
design paradigm, which is a unification of automated VLSI synthesis, machine intelligence,
and cryptographic protection of secure biomedical hardware acceleration.

Authors’ e-mail ID: gajrajsingh@ignou.ac.in; sht00357@gmail.com; sabohatkamiloval176@
gmail.com; abdullayevibrohimjon108@gmail.com; sh.nayimov@kiut.uz; Sandeep.dongre@
sibmnagpur.edu.in; enocharulprakash03@gmail.com

Authors’ ORCID IDs: 0000-0003-0870-921X; 0000-0001-7911-7196; 0009-0005-6366-1716;
0009-0001-0439-5156; 0000-0001-8263-9147; 0009-0009-1014-1177; 0000-0001-7533-1793

How to cite this article: Gajraj Singh, et al. Machine Learning-Assisted Automated VLSI
Design for Bioinformatics Hardware Accelerators with Embedded Cryptographic Security,
Journal of VLSI Circuits and System, Vol. 7, No. 2, 2025 (pp. 30-36).

Journal of VLSI circuits and systems, ISSN 2582-1458


WWW.VLSIJOURNAL.COM�

Gajraj Singh, et al.
Machine Learning-Assisted Automated VLSI Design for Bioinformatics Hardware Accelerators

INTRODUCTION

Genome sequencing, molecular dynamics, and mul-
tiomics analytic applications are some of the bioinfor-
matical applications that are increasingly dependent on
high-performance accelerators able to manage large-
scale and heterogeneous calculational pipelines. The
conventional VLSI design approaches have difficulty
satisfying the conflicting requirements of throughput,
privacy, and flexibility needed in the biomedical envi-
ronment. Optimized architecture synthesis, logic syn-
thesis, buffer assignment, datapath scheduling, and
cryptographic integration have seen a revolutionary
change in their paradigms using machine learning-
assisted automation.l'?! The presence of automated
VLSI tools and the ML-driven optimization allows the
designers to achieve both high efficiency and powerful
data protection at the same time.

The bioinformatics operations produce sensitive,
patient-related information that requires hardware
security modules. The high rate of development of dis-
tributed biomedical systems, remote diagnostics, and
portable sequencing devices only increases the neces-
sity of secure accelerators. Cryptography such as the
AES-based data confidentiality, secure hash primitives,
and device-specific authentication are being imple-
mented more prominently within the accelerators that
are performed to realize sequence alignhment or muta-
tion detection tasks.[*7'>1%221 Machine learning models
improve this process by learning optimal cryptographic
parameters, predicting architectural parameters and
exploration of design space to balance energy, perfor-
mance, and silicon cost.[>61

The current research on VLSI security, embedded cryp-
tographic hardware, and ML-driven synthesis indicates
that it is possible to integrate hardware automation
with secure computation in biomedical systems.[38417.23]
Nevertheless, there are a small number of studies where
such capabilities have been incorporated specifically
in the case of bioinformatics accelerators. This void is
filled in this paper by offering an integrated ML-aided
VLSI design process with embedded cryptographic secu-
rity units. The framework is confined and regulation-
ally compliant in addition to facilitating a large amount
of computation required to support next-generation
genomic and proteomic pipelines.

RELATED WORK

Machine learning-assisted VLSl automation has
been shown to enhance the predictive accuracy of
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architectural design, floorplan optimization, and logic
synthesis, while simultaneously accelerating time-to-
silicon and reducing engineering costs.">° Research
observations underscore the use of ML to conduct explo-
ration on datapath construction and memory hierarchy
design that is essential in bioinformatics kernels that
require enormous parallelism on large datasets!'?'>®l
The application of RL strategies has been used to opti-
mize hardware configurations in a dynamical manner
and have exhibited better adaptability to changes in
workload.[":20:21]

The bioinformatics accelerators have developed out of
the generic SIMD platforms into domain-specific VLSI
implementations that can perform alignment, clustering,
and molecular computation. Such accelerators demand
a high level of co-location of signal-processing units,
pattern-matching units, and arithmetic datapaths, the
performance of which is highly sensitive to ML-derived
configuration rules.l®”'% Meanwhile, the literature of
embedded systems documents significant improvement
in the secure hardware design, cryptographic primitives,
and authentication schemes with respect to critical
applications that demand the safeguarding of the tam-
per and secure data transmissions.t>8141l

Reconfigurable hardware security studies, loT biomed-
ical systems, and secure embedded systems also high-
light the importance of securing hardware on processing
medical and bioinformatics datasets.[24"*] Moreover,
according to Al hardware accelerator studies, co-op-
timization based on ML can be used to simultaneously
increase the efficiency of computations and security
resilience.l'"! All these preceding papers encourage the
adoption of ML automation and cryptography to protect
bioinformatics hardware, which forms the basis of the
methodology in this paper.

METHODOLOGY
ML-Assisted VLSI Design-Space Exploration

The suggested automated design framework consists of
a combination of the supervised learning and RL, which
provides efficient exploration of the multidimensional
VLSI design space of a secure bioinformatics accelerator.
The architectural and micro-architectural parameters
comprise the design space, including datapath width,
pipeline depth, memory hierarchy partitioning, clock
frequency targets, and cryptographic module configura-
tion. The design points of each candidate are defined
by a feature vector which models these parameters,
and they are assessed in terms of power (P), area (A),
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and delay (D), and an overall measure of security
strength S_.

A regression model is given supervised training to give
an approximation of the nonlinear mapping between
architectural parameters and physical implementation
measures. Every training sample is obtained through
synthesis of a candidate architecture based on stan-
dard-cell library and the extraction of post-synthesis
estimates of power, area, and critical-path delay. The
regression equation then predicts ﬁ, A, ) etc., in unseen
configurations, greatly saving the full runs of synthesis in
the course of exploration. The worldwide optimization
goal is formulated as:

F=AP+4,A+4,D+ 4,5,

where 4, 4,, A, and A, are design values, which are
weights that trade off power consumption, silicon area,
timing, and security. Smaller values of F represent more
desirable design values.

A search then is refined using an RL agent to what are
provided by the static regression models. The environ-
ment state represents the set of present design param-
eters and the expected measures, and the actions
represent a set of incremental adjustments, like add-
ing a depth of the pipeline of the alignment engine,
resizing the array of vector processors, switching on or
off certain cryptographic subblocks, or changing clock
targets. The improvement in the objective function
AF between the successive design iterations gives the
reward function, and penalties are given when there is a
violation of timing or area constraints.

Figure 1 represents the overall flow. The figure demon-
strates the interplay between three most important
elements, namely, (i) a design generator that instanti-
ates candidate RTL configurations, (ii) a synthesis and

Synthesis & Analysis
Backend

Design Generator ML/RL Engine

Fig. 1: ML-assisted VLSI architecture exploration
workflow

32

analysis backend that generates the P, A, and D metrics,
and (iii) the ML/RL engine that learns to select the best
configurations. The loop is repeated until the RL agent
reaches the policy that represents the stable identifi-
cation of architecture with good trade-offs. Practically,
this methodology will minimize the full synthesis exe-
cutions and lower design closure time, at the same
time integrating security-awareness in the design-space
exploration.

Bioinformatics Accelerator Architecture with
Embedded Security

The secure bioinformatic accelerator is optimized to
execute tasks like genomic sequence alighment as well
as protein scoring, which are overwhelmed by repetitive
comparison, scoring, and integrity checking tasks. The
architecture takes the form of a modular design con-
sisting of systolic alignment engine, a vector processing
array, a hash/signature unit, and a memory subsystem.
All these modules are closely combined with inbuilt
cryptographic and reliability capabilities to ensure that
the data-in-motion and data-at-rest are secure through-
out the processing.

Table 1, Core Modules of the Secure Bioinformatics
Accelerator, summarizes the functional and security
properties of the accelerator, the list of key modules,
their key functions, and the corresponding security
improvements. The alignment engine enables genome-
wide pattern matching with native support for encrypted
input and output buffers, ensuring robust protection of
sensitive biological data.

The array of the vector processor carries out parallel
scoring and includes fault-injection resistance mecha-
nisms either in the form of redundancy cheques or light-
weight error-checking codes. Data integrity is enforced
by a SHA-2-based hashing and signature mechanism
that cryptographically binds results to PUF-generated

Table 1: Core modules of the secure
bioinformatics accelerator

Module Function Security Feature

Alignment Engine | Pattern Encrypted I/0
matching buffers

Vector Processing | Parallel scoring | Fault injection

Array resistance

Hash/Signature Data integrity | SHA-2 + PUF binding

Unit

Memory Subsystem | Sequence ECC + secure regions

storage
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identities, ensuring traceability to a unique hardware
instance.

Memory subsystem is where sequence data are stored
in locations with error check code (ECC) and nonsecure
partitioning in order to isolate high-sensitivity data.

T — Nops
secure t +t )

core crypto

establishes the safe throughput of the accelerator, N
is the number of useful bioinformatics operations, t is
the core time (alignhment, scoring, memory access), and
t is the extra latency of encryption, hashing, and iden-
tity binding. The goal of the ML-assisted exploration is to
have t +t minimized at a given level of security

core crypto

and T maximized.

secure

With the combination of physical design measurements
and this secure throughput model, the framework pro-
vides that both performance and security consciousness
about architectural choices (memory banking, pipeline
staging, and cryptographic module selection) are made.
The resultant design is not just a high-performance
accelerator but a hardware platform where confidential-
ity, integrity, as well as authenticity are implemented in
the datapath at the register transfer level.

Automated Cryptographic Insertion Algorithm

In order to combine security systematically in the accel-
erator, an automated cryptographic insertion algorithm
is used in the RTL design phase. Instead of tediously
establishing encryption and hash blocks, the algorithm
examines dataflows, locates the paths of sensitive data,
and places suitable cryptographic modules taking into
account timing and area constraints. The algorithm
works together with the ML estimator and RL agent,
forming a closed loop where the security placement
decisions are constantly improved, depending on the
estimated cost of implementation.

On a higher level, the algorithm starts with the pars-
ing of the RTL netlist and building of a dataflow graph
whereby nodes are functional blocks and edges are
data dependencies. Sensitive datapaths are identified
via explicit design annotations or automatically inferred
based on their connectivity to external interfaces and
protected memory regions.

The algorithm requests the ML-based latency and power
estimator to estimate the cost of the AES and SHA-2 or
PUF-based components to be inserted in each sensitive
edge.
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The formalization of the decision process is presented in
Algorithm 1.

Cryptographic blocks are automatically integrated into
the design while ensuring compliance with the target

performance, area, and power constraints.

Another simplified form of the algorithm is as follows:

Algorithm 1: Automated cryptographic block
insertion.

1. Parse the RTL and build a dataflow graph.

2. ldentify sensitive datapaths based on annota-
tions and connectivity.

3. For each sensitive path, evaluate candidate
crypto modules (AES, SHA, PUF) using the ML
estimator to predict added delay and power.

4. Select the module configuration that minimizes
the increase in the global objective while
meeting security requirements.

5. Insert the selected crypto module into the RTL
and regenerate timing constraints.

6. Invoke the synthesis flow and update the mea-
sured P, A, and D metrics.

7. Provide the new metrics to the RL agent,
which updates its policy and suggests subse-
quent modifications.

8. Repeat steps 2-7 until convergence criteria on
and timing closure are satisfied.

With the implementation of ML estimates together with
RL-based adjustment into the insertion loop, naive
over-instrumentation is avoided, in which the inclusion
of security of all paths would become power and area
prohibitive. Rather, it provides a balanced design where
it strategically deploys cryptographic protection where
needed, and without compromising the throughput or
breaking the physical design constraints, the security
level of S_ was raised. This automated mechanism is
important in ensuring that the final accelerator is secure
and implementation-efficient, and the practice also
scales the methodology to larger or more complicated
bioinformatics workloads.

RESULTS AND DISCUSSION

The suggested ML-assisted VLS| design system was
tested on a collection of bioinformatics kernels, such
as sequence alignment, vector scoring pipelines, and
hash-based signature verification. To be fair in the
comparison, both secure and nonsecure accelerator
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configurations were synthesized with the use of the
same standard-cell library. The exploration framework
based on ML is faster in design-space exploration and
produces optimized RTL designs with reduced area-
power-delay product than the traditional manual tuning.
The assessment shows that the ML-assisted design saves
about 32% on the total design exploration time, mainly
because of a reduction in the number of full synthe-
sis steps, as well as the accuracy with which physical
parameters are predicted. In addition, the optimized
architecture also achieves power savings of up to 18%,
which supports the usefulness of incorporating securi-
ty-conscious and performance-conscious elements in
the objective function.

The improvements are depicted in Figure 2, which
shows the power consumption in various kernel config-
urations comparing the designs that are ML-tuned with
the manually optimized baselines. As illustrated in the
figure, ML-guided exploration always finds lower-power
architectures that do not violate timing constraints.

Besides power analysis, throughput has been considered
in secure and nonsecure operating modes. Figure 3 indi-
cates that less than 7% overhead is added to the base
performance with the addition of cryptographic mod-
ules such as AES-GCM encryption, SHA-256 hashing, and
PUF-based cheques of identities, which shows that not
much overhead is added to the base performance when
hardware-accelerated cryptography operations are
switched on. The cross-sectional array scoring and align-
ment engines are designed for high throughput, leverag-
ing parallelism and pipelined datapaths throughout the
architecture.

Scalability was also tested by trade-offs between the
area and security strength. Figure 4 overlaid the area
overhead versus aggregate security measure based on
cryptographic strength, fault-injection tolerance, and
PUF entropy. The findings demonstrate the close to

120 = Baseline
B Proposed ML-Tuned

100

80

60

Power (mW)

40

20

Baseline ML-A ML-B ML-C
Architecture Variant

Fig. 2: Power reduction across ML-tuned architecture

#

linear relationship, whereas powerful security attributes
augment silicon area. The slope is moderate because of
lightweight implementations of AES and pipelined SHA.
This shows the scalability of the implementation of
security in accelerators with area penalties that are not
prohibitive in practice.

In order to supplement the graphical analysis,
Table 2 summarizes delay, area, and power results of
ML-optimized and manually tuned implementations.
Machine learning-driven designs exhibit more robust
timing closure and consistently superior PPA metrics
across diverse workloads.

Table 2 indicates that the ML-based methodology has
low delay, is less area-consuming, and it consumes sig-
nificantly less energy; therefore, it can better be used in
low-power bioinformatics platforms.

Cryptographic overhead was studied specifically with
the view of measuring the price of implementing the
pipelines of SHA-256 and AES-GCM. Table 3 presents
the summary of the execution time of the major cryp-
tographic operations in software- and hardware-acceler-
ated systems.
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Fig. 3: Throughput comparison for secure and
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Table 2: Performance metrics for ML
versus manual VLSI design

Metric Manual Design | ML-Optimized Design
Critical Path 7.42 6.81
Delay (ns)
Total Area (mm?) 3.27 2.94
Power (mW) 41.6 34.2

Table 3: Cryptographic overhead analysis
Operation Software Hardware Reduction

Latency (ps) | Latency (ps) | (%)

SHA-256 Hash 112.3 32.5 7141
AES-GCM 154.8 49.6 67.9
Encrypt
PUF Identity 18.4 4.6 75.0
Check

The results of Table 3 indicate a significant decrease in
cryptographic latency, which proves the advantage of
specialized hardware blocks. These cuts are also associ-
ated with the low throughput penalty in secure mode (as
experienced in Figure 3). The findings point at the effi-
ciency of the incorporation of lightweight cryptographic
accelerators into the datapath so that security should
not undermine the processing functionality of the main
bioinformatics.

Together, Figures 2-4 and Tables 2 and 3 indicate that
the VLSI design methodology by using the security-em-
bedded, ML-aided approach has better performance,
increased energy efficiency, and high cryptographic
performance. The general structure can be scaled to
include more modules or the implementation of a higher
level of security. These properties render the accelera-
tor an appropriate tool in real-time analytical processes
of biological data over which confidentiality, integrity,
and speed are all demanded at the same time.

CONCLUSION

This publication described a machine learning-
aided VLS| design framework that integrates both
high-throughput bioinformatics acceleration and embed-
ded cryptographic security tools. The framework, which
combines predictive modelling, regression-based model-
ling, and RL policies into the design exploration cycle,
automates architectural decision-making and allows
the framework to use a lot less reliance on exhaus-
tive synthesis steps. Co-optimization of power, area,
delay, and security metrics allows to find the optimal
balance configurations that can fulfil the performance
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requirements and satisfy the security requirements of
strict data-protection needs of the genomic and pro-
teomic workloads.

Inclusion of hardware-based security, namely, light-
weight AES-GCM encryption, SHA-2 pipelines, and
identity binding by PUFs have ensured that data con-
fidentiality and integrity are maintained during the
pipeline of computation. The experimental character-
ization proved that the suggested ML-guided method-
ology achieves quantifiable design productivity, power
consumption, and competitive timing closure, and that
might achieve cryptographic overhead at acceptable lev-
els. Also, the secure throughput model and automated
cryptographic insertion algorithm offer a systematized
and scalable method of implementing privacy-pro-
tecting mechanisms directly into the datapath of the
accelerator.

The given methodology provides the basis of the future
secure bioinformatics accelerator that is going to be
subject to more and more performance pressure and
more and more high expectations toward cybersecurity.
Future developments of this work will aim at the on-chip
continuous learning of adaptive runtime tuning, hard-
ware implementation of new sequence-analysis algo-
rithms, and neuromorphic or event-based cryptographic
units to make further savings on energy per operation.
Also, sub-5 nm VLS| implementation, improved PUF
architecture, and stronger linkage to distributed ledger
systems are promising routes to improve both security
and processing efficiency in the next-generation bio-
medical computing systems.

REFERENCES

1. Baungarten-Leon,E. ., Cisneros, S. O., Abdelmoneum, M. A.,
Morales, R., & Pinedo-Diaz, G. (2024). The gene-
sis of Al by Al integrated circuit: where Al creates
Al. Electronics, 13(9), 1704. https://doi.org/10.3390/
electronics13091704

2. Bianchi, G. F. (2025). Smart sensors for biomedical appli-
cations: design and testing using VLS| technologies.
Journal of Integrated VLS|, Embedded and Computing
Technologies, 2(1), 53-61.

3. Cao, Y., Gupta, A, Liang, J., & Turakhia, Y. (2024). DP-HLS:
A High-Level Synthesis Framework for Accelerating
Dynamic Programming Algorithms in Bioinformatics. arXiv
preprint arXiv:2411.03398.

4. Chamon, C., Sarkar, A., & Abbott, A. L. (2025). Noise-
Driven Al Sensors: Secure Healthcare Monitoring with
PUFs. arXiv preprint arXiv:2506.05135.

5. Chen, H., Hong, X., Cheng, Y., Wang, X. J., Chen, L.,
Cheng, X., & Lin, J. (2025). Heterogeneous bioinformatic
data encryption on portable devices. Scientific Reports,
15(1). https://doi.org/10.1038/s41598-025-96350-7

N


https://doi.org/10.3390/electronics13091704
https://doi.org/10.3390/electronics13091704
https://doi.org/10.1038/s41598-025-96350-7

Gajraj Singh, et al.
Machine Learning-Assisted Automated VLSI Design for Bioinformatics Hardware Accelerators

10.

11.

12.

13.

14.

Chinbat, T., Madanian, S., Airehrour, D., & Hassandoust, F.
(2024). Machine learning cryptography methods for loT
in healthcare. BMC Medical Informatics and Decision
Making, 24(1). https://doi.org/10.1186/s12911-024-02548-6
Doménech, J., Martin-Faus, 1. V., Mhiri, S., &
Vallés, J. R. P. (2024). Ensuring patient safety in loMT:
a systematic literature review of behavior-based
intrusion detection systems. Internet of Things, 28,
101420. https://doi.org/10.1016/j.i0t.2024.101420
Espinosa, E., Alvarez, R. R., Miranda, J., Larrosa, R., Pedn-
Quiros, M., Plata, O., & Atienza, D. (2025). GeneTEK: Low-
power, high-performance and scalable genome sequence
matching in FPGAs. arXiv preprint arXiv:2509.01020.

Jain, A., & Bhullar, S. (2025). Al-driven wearable health
devices with health-aware control and secure Prognostics:
Experimental and Simulation-Based Validation. Array,
100532.

Jayaraman, P., Desman, J., Sabounchi, M., Nadkarni, G. N.,
& Sakhuja, A. (2024). A primer on reinforcement learning
in medicine for clinicians [Review of A primer on rein-
forcement learning in medicine for clinicians]. Npj Digital
Medicine, 7(1). Nature Portfolio. https://doi.org/10.1038/
s41746-024-01316-0

Karthika, J. (2024). Smart concrete with embedded
sensors for structural health monitoring. Journal of
Reconfigurable Hardware Architectures and Embedded
Systems, 1(1), 36-42.

Kumar, T. M. S. (2024). Integrative approaches in bioin-
formatics: enhancing data analysis and interpretation.
Innovative Reviews in Engineering and Science, 1(1),
30-33%

Mpofu, K., & Mthunzi-Kufa, P. (2025). Recent advances
in artificial intelligence and machine learning based bio-
sensing technologies. In Biomedical engineering. https://
doi.org/10.5772/intechopen.1009613

Patra, A. C., Rout, S. K., & Ravindran, A. (2024).
AiEDA: agentic Al design framework for digital ASIC
system design. arXiv (Cornell University). https://doi.
org/10.48550/arxiv.2412.09745

15.

16.

17.

18.

19.

20.

21.

22.

23.

Perera, D., Habib, G., Xu, Q., Tan, D. J., He, K,
Cambria, E., & Feng, M. (2025). Beyond prediction: rein-
forcement learning as the defining leap in healthcare
Al. https://doi.org/10.48550/ARXIV.2508.21101

Qu, H., Zhang, W., Lin, J., Ma, S., Li, H., Shi, L., &
Xu, C. (2025). MLDSE: Scaling Design Space Exploration
Infrastructure for Multi-Level Hardware. arXiv preprint
arXiv:2503.21297.

Shaikh, J. A., Wang, C., Sima, M. W. U., Arshad, M.,
Owais, M., Hassan, D. S., ... & Muthanna, M. S. A.
(2025). A deep Reinforcement learning-based robust
Intrusion Detection System for securing loMT Healthcare
Networks. Frontiers in Medicine, 12, 1524286.

Sio, A. (2025). Integration of embedded systems in
healthcare monitoring. SCCTS Journal of Embedded
Systems Design and Applications, 2(2), 9-20.

Soni, K., Kumar, U., & Dosodia, P. (2014). A various bio-
metric application for authentication and identification.
International Journal of Communication and Computer
Technologies, 2(1), 6-10.

Tarig, M. (2024). A review of biosensors and arti-
ficial intelligence in healthcare and their clinical
significance [Review of A review of biosensors and arti-
ficial intelligence in healthcare and their clinical signifi-
cance]. Psychology & Psychological Research International
Journal, 9(1), 1. https://doi.org/10.23880/pprij-16000392
Velliangiri, A. (2024). Security challenges and solutions in
loT-based wireless sensor networks. Journal of Wireless
Sensor Networks and loT, 1(1), 8-14.

Namrata Mishra. (2025). Multi-modal deep learning for
emotion recognition from video and voice data. SECITS
Journal of Scalable Distributed Computing and Pipeline
Automation, 2(1), 16-20.

Vincentelli, B., & Schaumont, K. R. (2025). Security
protocols for embedded systems in critical infrastruc-
ture. SCCTS Journal of Embedded Systems Design and
Applications, 2(1), 1-11.

Journal of VLSI circuits and systems, ISSN 2582-1458


https://doi.org/10.48550/ARXIV.2508.21101
https://doi.org/10.23880/pprij-16000392
https://doi.org/10.1186/s12911-024-02548-6
https://doi.org/10.1016/j.iot.2024.101420
https://doi.org/10.1038/s41746-024-01316-0
https://doi.org/10.1038/s41746-024-01316-0
https://doi.org/10.5772/intechopen.1009613
https://doi.org/10.5772/intechopen.1009613
https://doi.org/10.48550/arxiv.2412.09745
https://doi.org/10.48550/arxiv.2412.09745

